An Introduction to Bayesian Analysis Theory and Methods / by Jayanta K. Ghosh, Mohan Delampady, Tapas Samanta.

This is a graduate-level textbook on Bayesian analysis blending modern Bayesian theory, methods, and applications. Starting from basic statistics, undergraduate calculus and linear algebra, ideas of both subjective and objective Bayesian analysis are developed to a level where real-life data can be...

Full description

Saved in:
Bibliographic Details
Main Authors: Ghosh, Jayanta K. (Author), Delampady, Mohan (Author), Samanta, Tapas (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2006.
Edition:1st ed. 2006.
Series:Springer Texts in Statistics,
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3331508
003 MWH
005 20191029052521.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387354330 
024 7 |a 10.1007/978-0-387-35433-0  |2 doi 
035 |a (DE-He213)978-0-387-35433-0 
050 4 |a E-Book 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
100 1 |a Ghosh, Jayanta K.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Introduction to Bayesian Analysis  |h [electronic resource] :  |b Theory and Methods /  |c by Jayanta K. Ghosh, Mohan Delampady, Tapas Samanta. 
250 |a 1st ed. 2006. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2006. 
300 |a XIII, 354 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 1431-875X 
490 1 |a Springer eBook Collection 
505 0 |a Statistical Preliminaries -- Bayesian Inference and Decision Theory -- Utility, Prior, and Bayesian Robustness -- Large Sample Methods -- Choice of Priors for Low-dimensional Parameters -- Hypothesis Testing and Model Selection -- Bayesian Computations -- Some Common Problems in Inference -- High-dimensional Problems -- Some Applications. 
520 |a This is a graduate-level textbook on Bayesian analysis blending modern Bayesian theory, methods, and applications. Starting from basic statistics, undergraduate calculus and linear algebra, ideas of both subjective and objective Bayesian analysis are developed to a level where real-life data can be analyzed using the current techniques of statistical computing. Advances in both low-dimensional and high-dimensional problems are covered, as well as important topics such as empirical Bayes and hierarchical Bayes methods and Markov chain Monte Carlo (MCMC) techniques. Many topics are at the cutting edge of statistical research. Solutions to common inference problems appear throughout the text along with discussion of what prior to choose. There is a discussion of elicitation of a subjective prior as well as the motivation, applicability, and limitations of objective priors. By way of important applications the book presents microarrays, nonparametric regression via wavelets as well as DMA mixtures of normals, and spatial analysis with illustrations using simulated and real data. Theoretical topics at the cutting edge include high-dimensional model selection and Intrinsic Bayes Factors, which the authors have successfully applied to geological mapping. The style is informal but clear. Asymptotics is used to supplement simulation or understand some aspects of the posterior. J.K. Ghosh has been Director and Jawaharlal Nehru Professor at the Indian Statistical Institute and President of the International Statistical Institute. He is currently a professor of statistics at Purdue University and professor emeritus at the Indian Statistical Institute. He has been the editor of Sankhya and has served on the editorial boards of several journals including the Annals of Statistics. His current interests in Bayesian analysis include asymptotics, nonparametric methods, high-dimensional model selection, reliability and survival analysis, bioinformatics, astrostatistics and sparse and not so sparse mixtures. Mohan Delampady and Tapas Samanta are both professors of statistics at the Indian Statistical Institute and both are interested in Bayesian inference, specifically in topics such as model selection, asymptotics, robustness and nonparametrics. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Statistics . 
690 |a Electronic resources (E-books) 
700 1 |a Delampady, Mohan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Samanta, Tapas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer Texts in Statistics,  |x 1431-875X 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-0-387-35433-0  |3 Click to view e-book  |t 0 
907 |a .b33315085  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 3  |i 1 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i22446709  |z 02-26-20 
999 f f |i 06c58621-028a-50dc-85ab-4f8c78bacc2b  |s b96654c7-29dc-53f5-a68a-7d1904604627  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File