A Proof Theory for Description Logics by Alexandre Rademaker.

Description Logics (DLs) is a family of formalisms used to represent knowledge of a domain. They are equipped with a formal logic-based semantics. Knowledge representation systems based on description logics provide various inference capabilities that deduce implicit knowledge from the explicitly re...

Full description

Saved in:
Bibliographic Details
Main Author: Rademaker, Alexandre (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: London : Springer London : Imprint: Springer, 2012.
Edition:1st ed. 2012.
Series:SpringerBriefs in Computer Science,
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3336041
003 MWH
005 20191029053753.0
007 cr nn 008mamaa
008 120516s2012 xxk| s |||| 0|eng d
020 |a 9781447140023 
024 7 |a 10.1007/978-1-4471-4002-3  |2 doi 
035 |a (DE-He213)978-1-4471-4002-3 
050 4 |a E-Book 
072 7 |a UYA  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
072 7 |a UYA  |2 thema 
100 1 |a Rademaker, Alexandre.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Proof Theory for Description Logics  |h [electronic resource] /  |c by Alexandre Rademaker. 
250 |a 1st ed. 2012. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2012. 
300 |a X, 106 p. 16 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
490 1 |a Springer eBook Collection 
505 0 |a Introduction -- Background -- Sequent Calculus for ALC -- Comparing SCalc with other ALC Deduction Systems -- Natural Deduction for ALC.- A Proof Theory for ALCQI -- Proofs and Explanations -- A Prototype Theorem Prover -- Conclusion. 
520 |a Description Logics (DLs) is a family of formalisms used to represent knowledge of a domain. They are equipped with a formal logic-based semantics. Knowledge representation systems based on description logics provide various inference capabilities that deduce implicit knowledge from the explicitly represented knowledge. A Proof Theory for Description Logics introduces Sequent Calculi and Natural Deduction for some DLs (ALC, ALCQ). Cut-elimination and Normalization are proved for the calculi. The author argues that such systems can improve the extraction of computational content from DLs proofs for explanation purposes. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Mathematical logic. 
650 0 |a Computer science—Mathematics. 
690 |a Electronic resources (E-books) 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4471-4002-3  |3 Click to view e-book  |t 0 
907 |a .b33360418  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxk  |h 2  |i 1 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i22492033  |z 02-26-20 
999 f f |i 503d06c9-6882-50f8-bd35-c2d229c6dbdf  |s ed79ba3d-02ec-5870-a572-1517b31b8a1c  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File