Canard cycles : from birth to transition / Peter De Maesschalck, Freddy Dumortier, Robert Roussarie.

This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector fields. The central question of controlling the limit cycles...

Full description

Saved in:
Bibliographic Details
Main Authors: De Maesschalck, Peter (Author), Dumortier, Freddy (Author), Roussarie, Robert H. (Author)
Format: Book
Language:English
Published: Cham, Switzerland : Springer, [2021]
Series:Ergebnisse der Mathematik und ihrer Grenzgebiete ; 3. Folge, Bd. 73.
Subjects:

MARC

LEADER 00000cam a2200000Mi 4500
001 b3531277
003 MWH
005 20211004092444.0
008 210522t20212021sz a b 001 0 eng d
016 7 |a 020314503  |2 Uk 
020 |a 3030792323 
020 |a 9783030792329 
020 |z 9783030792336  |q ebook 
035 |a (OCoLC)1252415084 
035 |a (OCoLC)1252415084 
040 |a YDX  |b eng  |e rda  |c YDX  |d SOI  |d OCLCO  |d OCLCF  |d UKMGB  |d OHX 
049 |a HCDD 
090 |a QA372  |b .D378 2021 
100 1 |a De Maesschalck, Peter,  |e author. 
245 1 0 |a Canard cycles :  |b from birth to transition /  |c Peter De Maesschalck, Freddy Dumortier, Robert Roussarie. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2021] 
264 4 |c ©2021 
300 |a xxi, 408 pages :  |b illustrations (some color) ;  |c 25 cm. 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
490 1 |a Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / Series of modern surveys in mathematics,  |x 0071-1136 ;  |v volume 73 
504 |a Includes bibliographical references (pages 401-405) and index. 
520 |a This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector fields. The central question of controlling the limit cycles is addressed in detail and strong results are presented with complete proofs. In particular, the book provides a detailed study of the structure of the transitions near the critical set of non-isolated singularities. This leads to precise results on the limit cycles and their bifurcations, including the so-called canard phenomenon and canard explosion. The book also provides a solid basis for the use of asymptotic techniques. It gives a clear understanding of notions like inner and outer solutions, describing their relation and precise structure. The first part of the book provides a thorough introduction to slow-fast systems, suitable for graduate students. The second and third parts will be of interest to both pure mathematicians working on theoretical questions such as Hilbert's 16th problem, as well as to a wide range of applied mathematicians looking for a detailed understanding of two-scale models found in electrical circuits, population dynamics, ecological models, cellular (FitzHugh-Nagumo) models, epidemiological models, chemical reactions, mechanical oscillators with friction, climate models, and many other models with tipping points. 
505 0 |a Part I. Basic Notions. 1 Basic Definitions and Notions -- 2 Local Invariants and Normal Forms -- 3 The Slow Vector Field -- 4 Slow-Fast Cycles -- 5 The Slow Divergence Integral -- 6 Breaking Mechanisms -- 7 Overview of Known Results -- Part II. Technical Tools. 8 Blow-Up of Contact Points -- 9 Center Manifolds -- 10 Normal Forms -- 11 Smooth Functions on Admissible Monomials and More -- 12 Local Transition Maps -- Part III. Results and Open Problems. 13 Ordinary Canard Cycles -- 14 Transitory Canard Cycles with Slow-Fast Passage Through a Jump Point -- 15 Transitory Canard Cycles with Fast-Fast Passage Through a Jump Point -- 16 Outlook and Open Problems -- Index -- References. 
650 0 |a Singular perturbations (Mathematics) 
650 0 |a Vector fields. 
650 0 |a Bifurcation theory. 
700 1 |a Dumortier, Freddy,  |e author. 
700 1 |a Roussarie, Robert H.,  |e author. 
830 0 |a Ergebnisse der Mathematik und ihrer Grenzgebiete ;  |v 3. Folge, Bd. 73. 
907 |a .b35312774  |b 01-14-22  |c 10-04-21 
998 |a hq  |b 10-04-21  |c m  |d a   |e -  |f eng  |g sz   |h 0  |i 0 
994 |a C0  |b HCD 
945 |f  - -   |g 1  |h 0  |i 38400004184907  |j  - -   |k  - -   |l hqcol  |o    |p $0.00  |q -  |r    |s -   |t 0  |u 0  |v 0  |w 0  |x 0  |y .i22558305  |z 10-04-21 
999 f f |i 578ba2f2-4399-5de4-b42a-e63372b03949  |s 38958e34-d346-5f76-888a-ada4a13ebd9e  |t 0 
952 f f |p Can Circulate  |a College of the Holy Cross  |b Main Campus  |c Science  |d Science Library  |t 0  |e QA372 .D378 2021  |h Other scheme  |i Book  |m 38400004184907