Knowledge discovery for business information systems / edited by Witold Abramowicz, Jozef Zurada.

Current database technology and computer hardware allow us to gather, store, access, and manipulate massive volumes of raw data in an efficient and inexpensive manner. In addition, the amount of data collected and warehoused in all industries is growing every year at a phenomenal rate. Nevertheless,...

Full description

Saved in:
Bibliographic Details
Other Authors: Abramowicz, Witold, Zurada, Jozef, 1949-
Format: eBook
Language:English
Published: New York : Kluwer Academic Publishers, ©2001.
Series:Kluwer international series in engineering and computer science ; SECS 600.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 a 4500
001 ocm50621254
003 OCoLC
005 20241006213017.0
006 m o d
007 cr cn|||||||||
008 020917s2001 maua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCG  |d OCLCQ  |d MERUC  |d CCO  |d E7B  |d UAB  |d DKDLA  |d EBLCP  |d IDEBK  |d OCLCQ  |d OCLCF  |d OCLCQ  |d OCLCO  |d OKU  |d GW5XE  |d OCLCQ  |d COO  |d OCLCQ  |d AZK  |d LOA  |d COCUF  |d SUR  |d MOR  |d PIFBR  |d ZCU  |d OTZ  |d OCLCQ  |d U3W  |d OCLCA  |d STF  |d WRM  |d OCLCQ  |d CEF  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d CANPU  |d TKN  |d N$T  |d OCLCQ  |d DKC  |d OCLCQ  |d CNTRU  |d OCLCQ  |d UKCRE  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
019 |a 55046837  |a 228374960  |a 439648606  |a 475544368  |a 488801552  |a 517779574  |a 559669765  |a 647315695  |a 756699407  |a 760706273  |a 771307779  |a 888563712  |a 961626970  |a 961659748  |a 962581865  |a 962607255  |a 968306448  |a 984879755  |a 988532686  |a 992097968  |a 994779007  |a 1035657722  |a 1037937918  |a 1038654063  |a 1044246807  |a 1045503699  |a 1053027456  |a 1055345828  |a 1056307175  |a 1064045935  |a 1078831980  |a 1078846734  |a 1081285308  |a 1097323160  |a 1153548997 
020 |a 030646991X  |q (electronic bk.) 
020 |a 9780306469916  |q (electronic bk.) 
020 |a 9780792372431  |q (Cloth) 
020 |a 0792372433  |q (Cloth) 
020 |a 6610205655 
020 |a 9786610205653 
035 |a (OCoLC)50621254  |z (OCoLC)55046837  |z (OCoLC)228374960  |z (OCoLC)439648606  |z (OCoLC)475544368  |z (OCoLC)488801552  |z (OCoLC)517779574  |z (OCoLC)559669765  |z (OCoLC)647315695  |z (OCoLC)756699407  |z (OCoLC)760706273  |z (OCoLC)771307779  |z (OCoLC)888563712  |z (OCoLC)961626970  |z (OCoLC)961659748  |z (OCoLC)962581865  |z (OCoLC)962607255  |z (OCoLC)968306448  |z (OCoLC)984879755  |z (OCoLC)988532686  |z (OCoLC)992097968  |z (OCoLC)994779007  |z (OCoLC)1035657722  |z (OCoLC)1037937918  |z (OCoLC)1038654063  |z (OCoLC)1044246807  |z (OCoLC)1045503699  |z (OCoLC)1053027456  |z (OCoLC)1055345828  |z (OCoLC)1056307175  |z (OCoLC)1064045935  |z (OCoLC)1078831980  |z (OCoLC)1078846734  |z (OCoLC)1081285308  |z (OCoLC)1097323160  |z (OCoLC)1153548997 
050 4 |a QA76.9.D343  |b K56 2001eb 
072 7 |a COM  |x 005030  |2 bisacsh 
072 7 |a COM  |x 004000  |2 bisacsh 
049 |a HCDD 
245 0 0 |a Knowledge discovery for business information systems /  |c edited by Witold Abramowicz, Jozef Zurada. 
260 |a New York :  |b Kluwer Academic Publishers,  |c ©2001. 
300 |a 1 online resource (xvii, 431 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a The Kluwer international series in engineering and computer science ;  |v SECS 600 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 |a Current database technology and computer hardware allow us to gather, store, access, and manipulate massive volumes of raw data in an efficient and inexpensive manner. In addition, the amount of data collected and warehoused in all industries is growing every year at a phenomenal rate. Nevertheless, our ability to discover critical, non-obvious nuggets of useful information in data that could influence or help in the decision making process, is still limited. Knowledge discovery (KDD) and Data Mining (DM) is a new, multidisciplinary field that focuses on the overall process of information discovery from large volumes of data. The field combines database concepts and theory, machine learning, pattern recognition, statistics, artificial intelligence, uncertainty management, and high-performance computing. To remain competitive, businesses must apply data mining techniques such as classification, prediction, and clustering using tools such as neural networks, fuzzy logic, and decision trees to facilitate making strategic decisions on a daily basis. Knowledge Discovery for Business Information Systems contains a collection of 16 high quality articles written by experts in the KDD and DM field from the following countries: Austria, Australia, Bulgaria, Canada, China (Hong Kong), Estonia, Denmark, Germany, Italy, Poland, Singapore and USA. 
505 0 |a Cover -- Table of Contents -- Preface -- Foreword -- List of Contributors -- Chapter 1 Information Filters Suppliying Data Warehouses with Benchmarking Information -- 1. Introduction -- 2. Data Warehouses -- 3. The HyperSDI System -- 4. User Profiles in the HyperSDI System -- 5. Building Data Warehouse Profiles -- 6. Techniques for Improving Profiles -- 7. Implementation Notes -- 8. Conclusions -- References -- Chapter 2 Parallel Mining of Association Rules -- 1. Introduction -- 2. Parallel Mining of Association Rules -- 3. Pruning Techniques and The FPM Algorithm -- 4. Metrics for Data Skewness and Workload Balance -- 5. Partitioning of the Database -- 6. Experimental Evaluation of the Partitioning Algorithms -- 7. Discussions -- 8. Conclusions -- References -- Chapter 3 Unsupervised Feature Ranking and Selection -- 1. Introduction -- 2. Basic Concepts and Possible Approaches -- 3. An Entropy Measure for Continuous and Nominal Data Types -- 4. Algorithm to Find Important Variables -- 5. Experimental Studies -- 6. Clustering Using SUD -- 7. Discussion and Conclusion -- References -- Chapter 4 Approaches to Concept Based Exploration of Information Resources -- 1. Introduction -- 2. Conceptual Taxonomies -- 3. Ontology Driven Concept Retrieval -- 4. Search based on formal concept analysis -- 5. Conclusion -- Acknowledgements -- References -- Chapter 5 Hybrid Methodology of Knowledge Discovery for Business Information -- 1. Introduction -- 2. Present Status of Data Mining -- 3. Experiments with Mining Regularities from Data -- 4. Discussion -- Acknowledgements -- References -- Chapter 6 Fuzzy Linguistic Summaries of Databases for an Efficient Business Data Analysis and Decision Support -- 1. Introduction -- 2. Idea of Linguistic Summaries Using Fuzzy Logic with Linguistic Quantifiers -- 3. On Other Validity Criteria -- 4. Derivation of Linguistic Summaries via a Fuzzy Logic Based Database Querying Interface -- 5. Implementation for a Sales Database at a Computer Retailer -- 6. Concluding Remarks -- References -- Chaper 7 Integrating Data Sources Using a Standardized Global Directory -- 1. Introduction -- 2. Data Semantics and the Integration Problem -- 3. Previous work -- 4. The Integration Architecture -- 5. The Global Dictionary -- 6. The Relational Integration Model -- 7. Special Cases of Integration -- 8. Applications to the WWW -- 9. Future Work and Conclusions -- References -- Chapter 8 Maintenance of Discovered Association Rules -- 1. Introduction -- 2. Problem Description -- 3. The FUP Algorithm for the Insertion Only Case -- 4. The FUP Algorithm for the Deletions Only Case -- 5. The FUP2 Algorithm for the General Case -- 6. Performance Studies -- 7. Discussions -- 8. Conclusions -- Notes -- References -- Chapter 9 Multidimensional Business Process Analysis with the Process Warehouse -- 1. Introduction -- 2. Related Work -- 3. Goals of the Data Warehouse Approach -- 4. Data Source -- 5. Basic Process Warehouse Components Representing Business Process Analysis Requirements -- 6. Data Model a. 
650 0 |a Data mining. 
650 0 |a Knowledge acquisition (Expert systems) 
650 0 |a Database searching. 
650 7 |a online searching.  |2 aat 
650 7 |a COMPUTERS  |x Enterprise Applications  |x Business Intelligence Tools.  |2 bisacsh 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Data mining  |2 fast 
650 7 |a Database searching  |2 fast 
650 7 |a Knowledge acquisition (Expert systems)  |2 fast 
700 1 |a Abramowicz, Witold. 
700 1 |a Zurada, Jozef,  |d 1949-  |1 https://id.oclc.org/worldcat/entity/E39PCjqv7GP6xrtvwGdpJgxfmb 
776 0 8 |i Print version:  |t Knowledge discovery for business information systems.  |d New York : Kluwer Academic Publishers, ©2001  |z 0792372433  |w (DLC) 00048482  |w (OCoLC)45080120 
830 0 |a Kluwer international series in engineering and computer science ;  |v SECS 600. 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=3035622  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD