Independent component analysis : a tutorial introduction / James V. Stone.

Independent component analysis (ICA) is becoming an increasingly important tool for analyzing large data sets. In essence, ICA separates an observed set of signal mixtures into a set of statistically independent component signals, or source signals. In so doing, this powerful method can extract the...

Full description

Saved in:
Bibliographic Details
Main Author: Stone, James V., Dr
Format: eBook
Language:English
Published: Cambridge, Mass. : MIT Press, ©2004.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a22000004a 4500
001 ocm57559561
003 OCoLC
005 20241006213017.0
006 m o d
007 cr cnu|||unuuu
008 050203s2004 maua ob 001 0 eng d
010 |z  2004042589 
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d YDXCP  |d OCLCQ  |d N$T  |d OCLCQ  |d OCLCO  |d OCLCQ  |d IEEEE  |d OCLCF  |d IUL  |d COCUF  |d COO  |d OCLCQ  |d SLY  |d OCLCQ  |d AGLDB  |d ESU  |d OCLCQ  |d NJR  |d ROC  |d OCLCQ  |d RCC  |d EBLCP  |d VTS  |d MERER  |d OCLCQ  |d AU@  |d MITPR  |d STF  |d G3B  |d LEAUB  |d OCLCQ  |d SFB  |d VT2  |d OCLCO  |d OCLCQ  |d COA  |d INARC  |d OCLCO  |d OCLCL  |d OCLCQ 
019 |a 654767260  |a 880334641  |a 1011969898  |a 1020533719  |a 1022032108  |a 1125417662  |a 1136178377  |a 1167263610  |a 1286903568  |a 1340069215 
020 |a 9780262257046  |q (electronic bk.) 
020 |a 0262257041  |q (electronic bk.) 
020 |a 1417575034  |q (electronic bk.) 
020 |a 9781417575039  |q (electronic bk.) 
020 |a 0262693151  |q (pbk. ;  |q alk. paper) 
020 |a 9780262693158  |q (pbk. ;  |q alk. paper) 
024 8 |a (WaSeSS)ssj0000178183 
035 |a (OCoLC)57559561  |z (OCoLC)654767260  |z (OCoLC)880334641  |z (OCoLC)1011969898  |z (OCoLC)1020533719  |z (OCoLC)1022032108  |z (OCoLC)1125417662  |z (OCoLC)1136178377  |z (OCoLC)1167263610  |z (OCoLC)1286903568  |z (OCoLC)1340069215 
037 |a 3717  |b MIT Press 
037 |a 9780262257046  |b MIT Press 
050 4 |a QA76.87  |b .S78 2004eb 
072 7 |a COM  |x 044000  |2 bisacsh 
049 |a HCDD 
100 1 |a Stone, James V.,  |c Dr.  |1 https://id.oclc.org/worldcat/entity/E39PBJvmPqPjT6vDpVwKpxrjG3 
245 1 0 |a Independent component analysis :  |b a tutorial introduction /  |c James V. Stone. 
260 |a Cambridge, Mass. :  |b MIT Press,  |c ©2004. 
300 |a 1 online resource (xviii, 193 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rdaft 
500 |a "A Bradford book." 
504 |a Includes bibliographical references (pages 183-190) and index. 
588 0 |a Print version record. 
520 |a Independent component analysis (ICA) is becoming an increasingly important tool for analyzing large data sets. In essence, ICA separates an observed set of signal mixtures into a set of statistically independent component signals, or source signals. In so doing, this powerful method can extract the relatively small amount of useful information typically found in large data sets. The applications for ICA range from speech processing, brain imaging, and electrical brain signals to telecommunications and stock predictions. In Independent Component Analysis, Jim Stone presents the essentials of ICA and related techniques (projection pursuit and complexity pursuit) in a tutorial style, using intuitive examples described in simple geometric terms. The treatment fills the need for a basic primer on ICA that can be used by readers of varying levels of mathematical sophistication, including engineers, cognitive scientists, and neuroscientists who need to know the essentials of this evolving method. An overview establishes the strategy implicit in ICA in terms of its essentially physical underpinnings and describes how ICA is based on the key observations that different physical processes generate outputs that are statistically independent of each other. The book then describes what Stone calls "the mathematical nuts and bolts" of how ICA works. Presenting only essential mathematical proofs, Stone guides the reader through an exploration of the fundamental characteristics of ICA. Topics covered include the geometry of mixing and unmixing; methods for blind source separation; and applications of ICA, including voice mixtures, EEG, fMRI, and fetal heart monitoring. The appendixes provide a vector matrix tutorial, plus basic demonstration computer code that allows the reader to see how each mathematical method described in the text translates into working Matlab computer code. 
650 0 |a Neural networks (Computer science) 
650 0 |a Multivariate analysis. 
650 7 |a COMPUTERS  |x Neural Networks.  |2 bisacsh 
650 0 7 |a Multivariate analysis.  |2 cct 
650 0 7 |a Neural networks (Computer science)  |2 cct 
650 7 |a Multivariate analysis  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
758 |i has work:  |a Independent component analysis (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGjBC4kxMF9ggM3FFVdwQ3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Stone, James V.  |t Independent component analysis.  |d Cambridge, Mass. : MIT Press, ©2004  |z 0262693151  |w (DLC) 2004042589  |w (OCoLC)54356741 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.7551/mitpress/3717.001.0001?locatt=mode:legacy  |y Click for online access 
903 |a MIT-D2O-Backfile-Complete 
994 |a 92  |b HCD