An introduction to neural networks / James A. Anderson.

Saved in:
Bibliographic Details
Main Author: Anderson, James A.
Corporate Authors: CogNet, CogNet Library
Format: eBook
Language:English
Published: Cambridge, Mass. : MIT Press, ©1995.
©1995
Series:Bradford Book Ser.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Introduction
  • 1. Properties of single neurons
  • 2. Synaptic integration and neuron models
  • 3. Essential vector operations
  • 4. Lateral inhibition and sensory processing
  • 5. Simple matrix operations
  • 6. The linear associator : background and foundations
  • 7. The Kinear associator : simulations
  • 8. Early network models : the Perceptron
  • 9. Gradient descent algorithms
  • 10. Representation of information
  • 11. Applications of simple associators : concept formation and object motion
  • 12. Energy and neural networks : Hopfield networks and Boltzmann machines
  • 13. Nearest neighbor models
  • 14. Adaptive maps
  • 15. The BSB model : a simple nonlinear autoassociative neural network
  • 16. Associative Computation
  • 17. Teaching Arithmetic to a Neural Network
  • Afterword.