Equivariant degree theory / Jorge Ize, Alfonso Vignoli.

This volume presents a degree theory for maps which commute with a group of symmetries. This degree is no longer a single integer but an element of the group of equivariant homotopy classes of maps between two spheres and depends on the orbit types of the spaces.

Saved in:
Bibliographic Details
Main Author: Ize, Jorge, 1946-
Other Authors: Vignoli, Alfonso, 1940-
Format: eBook
Language:English
Published: Berlin ; New York : Walter de Gruyter, 2003.
Series:De Gruyter series in nonlinear analysis and applications ; 8.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000Ma 4500
001 ocn232160040
003 OCoLC
005 20241006213017.0
006 m o d
007 cr cn|||||||||
008 030303s2003 gw ob 001 0 eng d
010 |z  2003043999 
040 |a IOD  |b eng  |e pn  |c IOD  |d OCLCG  |d CUY  |d OCLCQ  |d YDXCP  |d N$T  |d IDEBK  |d OCLCQ  |d DKDLA  |d ADU  |d E7B  |d OCLCQ  |d MHW  |d OCLCQ  |d MERUC  |d OCLCQ  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d EBLCP  |d OCLCQ  |d DEBSZ  |d AZK  |d COCUF  |d MOR  |d PIFBR  |d ZCU  |d OCLCQ  |d OCLCO  |d U3W  |d STF  |d WRM  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d AU@  |d DKC  |d OCLCQ  |d UWK  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
016 7 |a 000024488365  |2 AU 
019 |a 191926237  |a 435607507  |a 487752589  |a 488472616  |a 614989414  |a 647668227  |a 722605489  |a 848066210  |a 888791541  |a 935267410  |a 961525640  |a 962670735  |a 1058420212  |a 1354628608 
020 |a 3110200023 
020 |a 9783110200027 
020 |a 9783110175509  |q (cloth ;  |q alk. paper) 
020 |a 3110175509  |q (cloth ;  |q alk. paper) 
020 |z 3110175509  |q (cloth ;  |q alk. paper) 
035 |a (OCoLC)232160040  |z (OCoLC)191926237  |z (OCoLC)435607507  |z (OCoLC)487752589  |z (OCoLC)488472616  |z (OCoLC)614989414  |z (OCoLC)647668227  |z (OCoLC)722605489  |z (OCoLC)848066210  |z (OCoLC)888791541  |z (OCoLC)935267410  |z (OCoLC)961525640  |z (OCoLC)962670735  |z (OCoLC)1058420212  |z (OCoLC)1354628608 
050 4 |a QA612  |b .I94 2003eb 
072 7 |a QA  |2 lcco 
072 7 |a MAT  |x 038000  |2 bisacsh 
049 |a HCDD 
100 1 |a Ize, Jorge,  |d 1946-  |1 https://id.oclc.org/worldcat/entity/E39PCjHFdvrdRVfMkbVCXBWX7d 
245 1 0 |a Equivariant degree theory /  |c Jorge Ize, Alfonso Vignoli. 
260 |a Berlin ;  |a New York :  |b Walter de Gruyter,  |c 2003. 
300 |a 1 online resource (xix, 361 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
380 |a Bibliography 
490 1 |a De Gruyter series in nonlinear analysis and applications,  |x 0941-813X ;  |v 8 
504 |a Includes bibliographical references (pages 337-358) and index. 
520 |a This volume presents a degree theory for maps which commute with a group of symmetries. This degree is no longer a single integer but an element of the group of equivariant homotopy classes of maps between two spheres and depends on the orbit types of the spaces. 
588 0 |a Print version record. 
505 0 |a Preface; Contents; Introduction; Chapter 1 Preliminaries; 1.1 Group actions; 1.2 The fundamental cell lemma; 1.3 Equivariant maps; 1.4 Averaging; 1.5 Irreducible representations; 1.6 Extensions of G-maps; 1.7 Orthogonal maps; 1.8 Equivariant homotopy groups of spheres; 1.9 Symmetries and differential equations; 1.10 Bibliographical remarks; Chapter 2 Equivariant Degree; 2.1 Equivariant degree in finite dimension; 2.2 Properties of the equivariant degree; 2.3 Approximation of the G-degree; 2.4 Orthogonal maps; 2.5 Applications; 2.6 Operations; 2.7 Bibliographical remarks. 
650 0 |a Topological degree. 
650 0 |a Homotopy groups. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Homotopy groups  |2 fast 
650 7 |a Topological degree  |2 fast 
650 7 |a Äquivariante Abbildung  |2 gnd 
650 7 |a Abbildungsgrad  |2 gnd 
650 7 |a Globale Analysis  |2 gnd 
700 1 |a Vignoli, Alfonso,  |d 1940-  |1 https://id.oclc.org/worldcat/entity/E39PCjFDYjVhg8wYCtKfhXgRJC 
776 0 8 |i Print version:  |a Ize, Jorge, 1946-  |t Equivariant degree theory.  |d Berlin ; New York : Walter de Gruyter, 2003  |w (DLC) 2003043999 
830 0 |a De Gruyter series in nonlinear analysis and applications ;  |v 8.  |x 0941-813X 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=325661  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD