Symplectic twist maps : global variational techniques / Christophe Golé.

This book concentrates mainly on the theorem of existence of periodic orbits for higher dimensional analogs of Twist maps. The setting is that of a discrete variational calculus and the techniques involve Conley-Zehnder-Morse Theory. They give rise to the concept of ghost tori which are of interest...

Full description

Saved in:
Bibliographic Details
Main Author: Golé, Christophe
Format: eBook
Language:English
Published: Singapore ; River Edge, NJ : World Scientific, ©2001.
Series:Advanced series in nonlinear dynamics ; v. 18.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 a 4500
001 ocn269468913
003 OCoLC
005 20240402213017.0
006 m o d
007 cr cnu---unuuu
008 081107s2001 si a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d N$T  |d OCLCQ  |d UBY  |d IDEBK  |d E7B  |d OCLCQ  |d OCLCF  |d OCLCQ  |d NLGGC  |d OCLCO  |d STF  |d EBLCP  |d DEBSZ  |d YDXCP  |d OCLCQ  |d AZK  |d COCUF  |d AGLDB  |d MOR  |d CCO  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d WRM  |d VTS  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d JBG  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d K6U  |d LEAUB  |d UKCRE  |d VLY  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 505147581  |a 646768390  |a 764499724  |a 881611083  |a 904804480  |a 961594056  |a 962566658  |a 988406363  |a 992106310  |a 1037753440  |a 1038689628  |a 1045472568  |a 1055390911  |a 1064126304  |a 1081270728  |a 1086429820  |a 1153457271  |a 1162046454  |a 1228530698  |a 1240513766  |a 1249239312  |a 1253408581  |a 1272924173  |a 1290105550  |a 1300509636 
020 |a 9789812810762  |q (electronic bk.) 
020 |a 9812810765  |q (electronic bk.) 
020 |a 1281956392 
020 |a 9781281956392 
020 |a 9786611956394 
020 |a 6611956395 
020 |z 9789810205898 
020 |z 9810205899 
035 |a (OCoLC)269468913  |z (OCoLC)505147581  |z (OCoLC)646768390  |z (OCoLC)764499724  |z (OCoLC)881611083  |z (OCoLC)904804480  |z (OCoLC)961594056  |z (OCoLC)962566658  |z (OCoLC)988406363  |z (OCoLC)992106310  |z (OCoLC)1037753440  |z (OCoLC)1038689628  |z (OCoLC)1045472568  |z (OCoLC)1055390911  |z (OCoLC)1064126304  |z (OCoLC)1081270728  |z (OCoLC)1086429820  |z (OCoLC)1153457271  |z (OCoLC)1162046454  |z (OCoLC)1228530698  |z (OCoLC)1240513766  |z (OCoLC)1249239312  |z (OCoLC)1253408581  |z (OCoLC)1272924173  |z (OCoLC)1290105550  |z (OCoLC)1300509636 
050 4 |a QA614.8  |b .G65 2001eb 
072 7 |a MAT  |x 038000  |2 bisacsh 
049 |a HCDD 
100 1 |a Golé, Christophe. 
245 1 0 |a Symplectic twist maps :  |b global variational techniques /  |c Christophe Golé. 
260 |a Singapore ;  |a River Edge, NJ :  |b World Scientific,  |c ©2001. 
300 |a 1 online resource (xviii, 301 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advanced series in nonlinear dynamics ;  |v v. 18 
504 |a Includes bibliographical references (pages 293-301) and index. 
588 0 |a Print version record. 
505 0 |a 0. Introduction. 1. Fall from paradise. 2. Billiards and broken geodesies. 3. An ancestor of symplectic topology -- 1. Twist maps of the annulus. 4. Monotone twist maps of the annulus. 5. Generating functions and variational setting. 6. Examples. 7. The Poincare-Birkhoff theorem -- 2. The Aubry-Mather theorem. 8. Introduction. 9. Cyclically ordered sequences and orbits. 10. Minimizing orbits. 11. CO orbits of all rotation numbers. 12. Aubry-Mather sets -- 3. Ghost circles. 14. Gradient flow of the action. 15. The gradient flow and the Aubry-Mather theorem. 16. Ghost circles. 17. Construction of ghost circles. 18. Construction of disjoint ghost circles. 19. Proof of lemma 18.5. 20. Proof of theorem 18.1. 21. Remarks and applications. 22. Proofs of monotonicity and of the Sturmian lemma -- 4. Symplectic twist maps. 23. Symplectic twist maps of T[symbol] x IR[symbol]. 24. Examples. 25. More on generating functions. 2.6. Symplectic twist maps on general cotangent bundles of compact manifolds -- 5. Periodic orbits for symplectic twist maps of T[symbol] x IR[symbol]. 27. Presentation of the results. 28. Finite dimensional variational setting. 29. Second variation and nondegenerate periodic orbits. 30. The coercive case. 31. Asymptotically linear systems. 32. Ghost tori. 33. Hyperbolicity Vs. action minimizers -- 6. Invariant manifolds. 34. The theory of Kolmogorov-Arnold-Moser. 35. Properties of invariant tori. 36. (Un)stable manifolds and heteroclinic orbits. 37. Instability, transport and diffusion -- 7. Hamiltonian systems vs. twist maps. 38. Case study: The geodesic flow. 39. Decomposition of Hamiltonian maps into twist maps. 40. Return maps in Hamiltonian systems. 41. Suspension of symplectic twist maps by Hamiltonian flows -- 8. Periodic orbits for Hamiltonian systems. 42. Periodic orbits in the cotangent of the n-torus. 43. Periodic orbits in general cotangent spaces. 44. Linking of spheres -- 9. Generalizations of the Aubry-Mather theorem. 45. Theory for functions on lattices and PDE's. 46. Monotone recurrence relationst. 47. Anti-integrable limit. 48. Mather's theory of minimal measures. 49. The case of hyperbolic manifolds. 50. Concluding remarks -- 10. Generating phases and symplectic topology. 51. Chaperon's method and the theorem Of Conley-Zehnder. 52. Generating phases and symplectic geometry. 
520 |a This book concentrates mainly on the theorem of existence of periodic orbits for higher dimensional analogs of Twist maps. The setting is that of a discrete variational calculus and the techniques involve Conley-Zehnder-Morse Theory. They give rise to the concept of ghost tori which are of interest in the dimension 2 case (ghost circles). The debate is oriented somewhat toward the open problem of finding orbits of all (in particular, irrational) rotation vectors. 
546 |a English. 
650 0 |a Twist mappings (Mathematics) 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Twist mappings (Mathematics)  |2 fast 
650 7 |a Análise global.  |2 larpcal 
758 |i has work:  |a Symplectic twist maps (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFqHBQWwCvVhQb8HJgJTDy  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Golé, Christophe.  |t Symplectic twist maps.  |d Singapore ; River Edge, NJ : World Scientific, ©2001  |z 9789810205898  |w (DLC) 2002284360  |w (OCoLC)48960458 
830 0 |a Advanced series in nonlinear dynamics ;  |v v. 18. 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=1679288  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD