Introduction to the mathematical theory of compressible flow / A. Novotný, I. Straéskraba.

This book provides a rapid introduction to the mathematical theory of compressible flow, giving a comprehensive account of the field and all important results up to the present day. The book is written in a clear, instructive and self-contained manner and will be accessible to a wide audience. - ;Th...

Full description

Saved in:
Bibliographic Details
Main Author: Novotný, A.
Other Authors: Straéskraba, I. (Ivan)
Format: eBook
Language:English
Published: Oxford ; New York : Oxford University Press, 2004.
Series:Oxford lecture series in mathematics and its applications ; 27.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000Ma 4500
001 ocn314216971
003 OCoLC
005 20240623213015.0
006 m o d
007 cr zn|||||||||
008 040802s2004 enk ob 001 0 eng d
010 |z  2004301771 
040 |a CN8ML  |b eng  |e pn  |c CN8ML  |d OCLCQ  |d N$T  |d E7B  |d OCLCQ  |d IDEBK  |d MERUC  |d OCLCQ  |d OCLCF  |d OCLCO  |d YDXCP  |d EBLCP  |d DEBSZ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d AGLDB  |d OTZ  |d OCLCQ  |d JG0  |d OCLCQ  |d CUY  |d LOA  |d COCUF  |d ICG  |d K6U  |d ZCU  |d STF  |d WRM  |d OCLCQ  |d VTS  |d CEF  |d OCLCQ  |d VT2  |d U3W  |d AU@  |d LHU  |d FVL  |d OCLCQ  |d WYU  |d LVT  |d YOU  |d S9I  |d TKN  |d BRX  |d W2U  |d DKC  |d OCLCQ  |d CNTRU  |d MT4IT  |d UX1  |d UWK  |d ADU  |d SFB  |d ESU  |d UKCRE  |d VLY  |d CN6UV  |d DGN  |d AJS  |d DKU  |d SDF  |d HS0  |d CNNOR  |d CNKUC  |d TUHNV  |d QGK  |d OCLCQ  |d OCLCO  |d MHW  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
015 |a GBA4Y1057  |2 bnb 
015 |a GBA4-Y1057 
019 |a 316719735  |a 455959151  |a 476257427  |a 646784817  |a 756878939  |a 1030820230  |a 1030844577  |a 1033543635  |a 1044945920  |a 1100564480  |a 1119044239  |a 1162014861  |a 1241804617  |a 1243581755  |a 1257368755  |a 1290109274  |a 1300470820 
020 |a 9780191523953  |q (electronic bk.) 
020 |a 019152395X  |q (electronic bk.) 
020 |z 0198530846  |q (Cloth) 
020 |a 1280845228 
020 |a 9781280845222 
035 |a (OCoLC)314216971  |z (OCoLC)316719735  |z (OCoLC)455959151  |z (OCoLC)476257427  |z (OCoLC)646784817  |z (OCoLC)756878939  |z (OCoLC)1030820230  |z (OCoLC)1030844577  |z (OCoLC)1033543635  |z (OCoLC)1044945920  |z (OCoLC)1100564480  |z (OCoLC)1119044239  |z (OCoLC)1162014861  |z (OCoLC)1241804617  |z (OCoLC)1243581755  |z (OCoLC)1257368755  |z (OCoLC)1290109274  |z (OCoLC)1300470820 
050 4 |a QA911  |b .N69 2004eb 
055 1 3 |a QA911  |b .N69 2004eb 
072 7 |a TEC  |x 021000  |2 bisacsh 
049 |a HCDD 
100 1 |a Novotný, A. 
245 1 0 |a Introduction to the mathematical theory of compressible flow /  |c A. Novotný, I. Straéskraba. 
260 |a Oxford ;  |a New York :  |b Oxford University Press,  |c 2004. 
300 |a 1 online resource (xx, 506 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Oxford lecture series in mathematics and its applications ;  |v 27 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 |a This book provides a rapid introduction to the mathematical theory of compressible flow, giving a comprehensive account of the field and all important results up to the present day. The book is written in a clear, instructive and self-contained manner and will be accessible to a wide audience. - ;This book provides a comprehensive introduction to the mathematical theory of compressible flow, describing both inviscid and viscous compressible flow, which are governed by the Euler and the Navier-Stokes equations respectively. The method of presentation allows readers with different backgrounds to. 
505 0 |a 1 Fundamental concepts and equations -- 1.1 Some mathematical concepts and notation -- 1.1.1 Basic notation -- 1.1.2 Some useful inequalities in IR[sup(N)] -- 1.1.3 Differential operators -- 1.1.4 Gronwall's lemma -- 1.1.5 Implicit functions -- 1.1.6 Transformations of Cartesian coordinates -- 1.1.7 Hölder-continuous and Lipschitz functions -- 1.1.8 The symbols "o" and "O" -- 1.1.9 Partitions of unity -- 1.1.10 Measure -- 1.1.11 Description of the boundary -- 1.1.12 Measure on the boundary of a domain -- 1.1.13 Classical Green's theorem -- 1.1.14 Lebesgue spaces. 
505 8 |a 1.1.15 Lebesgue's points -- 1.1.16 Absolutely continuous functions -- 1.1.17 Absolute continuity of integrals with respect to measurable subsets -- 1.1.18 Some theorems from integration theory -- 1.2 Governing equations and relations of gas dynamics -- 1.2.1 Description of the flow -- 1.2.2 The transport theorem -- 1.2.3 The continuity equation -- 1.2.4 The equations of motion -- 1.2.5 The law of conservation of the moment of momentum. Symmetry of the stress tensor -- 1.2.6 Inviscid and viscous fluids -- 1.2.7 The energy equation -- 1.2.8 The second law of thermodynamics and the entropy. 
505 8 |a 1.2.9 Principle of material frame indifference -- 1.2.10 Newtonian fluids -- 1.2.11 Conservative and dissipation form of the energy equation for Newtonian fluids -- 1.2.12 Entropy form of the energy equation for Newtonian fluids -- 1.2.13 Some consequences of the Clausius-Duhem inequality -- 1.2.14 Equations of state -- 1.2.15 Adiabatic flow of a perfect inviscid gas -- 1.2.16 Compressible Euler equations -- 1.2.17 Compressible Navier-Stokes equations for a perfect viscous gas -- 1.2.18 Barotropic flow of a viscous gas -- 1.2.19 Speed of sound -- 1.2.20 Simplified models. 
505 8 |a 1.2.21 Initial and boundary conditions -- 1.3 Some advanced mathematical concepts and results -- 1.3.1 Spaces of Hölder-continuous and continuously diffrentiable functions -- 1.3.2 Young's functions, Jensen's inequality -- 1.3.3 Orlicz spaces -- 1.3.4 Distributions -- 1.3.5 Sobolev spaces -- 1.3.6 Homogeneous Sobolev spaces -- 1.3.7 Tempered distributions -- 1.3.8 Radon measure and representation of C[sub(B)](])* -- 1.3.9 Functions of bounded variation -- 1.3.10 Functions with values in Banach spaces -- 1.3.11 Sobolev imbeddings of abstract spaces -- 1.3.12 Some compactness results. 
505 8 |a 1.4 Survey of concepts and results from functional analysis -- 1.4.1 Linear vector spaces -- 1.4.2 Topological linear spaces -- 1.4.3 Metric linear space -- 1.4.4 Normed linear space -- 1.4.5 Duals to Banach spaces and weak( -*) topologies -- 1.4.6 Riesz representation theorem -- 1.4.7 Operators -- 1.4.8 Elements of spectral theory -- 1.4.9 Lax-Milgram lemma -- 1.4.10 Imbeddings -- 1.4.11 Solution of nonlinear operator equations -- 2 Theoretical results for the Euler equations -- 2.1 Hyperbolic systems and the Euler equations -- 2.1.1 Zero-viscosity Burgers equation. 
546 |a English. 
650 0 |a Fluid dynamics  |x Mathematical models. 
650 0 |a Compressibility. 
650 7 |a compressibility.  |2 aat 
650 7 |a compression.  |2 aat 
650 7 |a TECHNOLOGY & ENGINEERING  |x Material Science.  |2 bisacsh 
650 7 |a Compressibility  |2 fast 
650 7 |a Fluid dynamics  |x Mathematical models  |2 fast 
700 1 |a Straéskraba, I.  |q (Ivan) 
758 |i has work:  |a Introduction to the mathematical theory of compressible flow (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGpWDYQxTGCb9WHv8Y4jG3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Novotný, A.  |t Introduction to the mathematical theory of compressible flow.  |d Oxford ; New York : Oxford University Press, 2004  |w (DLC) 2004301771 
830 0 |a Oxford lecture series in mathematics and its applications ;  |v 27. 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=422482  |y Click for online access 
880 8 |6 505-00/(S  |a 2.2.15 Quasilinear system -- 2.2.16 Local existence for a quasilinear system -- 2.2.17 Second grade approximations -- 2.2.18 Higher order energy estimates -- 2.2.19 Convergence of approximations -- 2.2.20 Uniqueness -- 2.2.21 Local existence for equations of an isentropic ideal gas -- 2.2.22 Existence of global smooth solutions for nonlinear hyperbolic systems -- 2.2.23 2 × 2 system of conservation laws, Riemann invariants -- 2.2.24 Plane wave solutions -- 2.2.25 Plane waves for the Euler system in 2D -- 2.3 Weak solutions -- 2.3.1 Blow up of classical solutions -- 2.3.2 Generalized formulation for systems of conservation laws -- 2.3.3 Piecewise smooth solutions -- 2.3.4 Entropy condition -- 2.3.5 Physical entropy -- 2.3.6 General parabolic approximation and the entropy condition -- 2.3.7 Entropy for a general scalar conservation law -- 2.3.8 Entropy for a 2 × 2 system of conservation laws in 1D -- 2.3.9 Entropy function for a p-system -- 2.3.10 Riemann problem -- 2.3.11 Riemann problem for 2 × 2 isentropic gas dynamics equations -- 2.3.12 Existence and uniqueness of admissible weak solution for a scalar conservation law -- 2.3.13 Plane waves admitting discontinuities -- 2.3.14 Existence of solutions to the 2 × 2 Euler system for an isentropic gas -- 2.3.15 Lax-Friedrichs difference approximations -- 2.3.16 Existence of approximations -- 2.3.17 Invariant regions for Riemann invariants -- 2.3.18 Compactness argument -- 2.3.19 Characterization of the weak limit by Young measure -- 2.3.20 Div-curl lemma and Tartar's commutation relation -- 2.3.21 Existence of weak entropy-entropy flux pairs -- 2.3.22 Localization of supp ν -- 2.3.23 Approximative limit is an admissible solution -- 2.3.24 Global existence for general systems in one dimension -- 2.4 Final comments -- 2.4.1 Local existence results -- 2.4.2 Global smooth solutions. 
880 8 |6 505-00/(S  |a 1.3.1 Spaces of Hölder-continuous and continuously diffrentiable functions -- 1.3.2 Young's functions, Jensen's inequality -- 1.3.3 Orlicz spaces -- 1.3.4 Distributions -- 1.3.5 Sobolev spaces -- 1.3.6 Homogeneous Sobolev spaces -- 1.3.7 Tempered distributions -- 1.3.8 Radon measure and representation of C[sub(B)](Ω)* -- 1.3.9 Functions of bounded variation -- 1.3.10 Functions with values in Banach spaces -- 1.3.11 Sobolev imbeddings of abstract spaces -- 1.3.12 Some compactness results -- 1.4 Survey of concepts and results from functional analysis -- 1.4.1 Linear vector spaces -- 1.4.2 Topological linear spaces -- 1.4.3 Metric linear space -- 1.4.4 Normed linear space -- 1.4.5 Duals to Banach spaces and weak( -*) topologies -- 1.4.6 Riesz representation theorem -- 1.4.7 Operators -- 1.4.8 Elements of spectral theory -- 1.4.9 Lax-Milgram lemma -- 1.4.10 Imbeddings -- 1.4.11 Solution of nonlinear operator equations -- 2 Theoretical results for the Euler equations -- 2.1 Hyperbolic systems and the Euler equations -- 2.1.1 Zero-viscosity Burgers equation -- 2.1.2 One-dimensional Euler equations -- 2.1.3 Lagrangian mass coordinates -- 2.1.4 Symmetrizable systems -- 2.1.5 Matrix form of the p-system -- 2.1.6 The Euler equations of an inviscid gas -- 2.2 Existence of smooth solutions -- 2.2.1 Hyperbolic systems and characteristics -- 2.2.2 Cauchy problem for system of conservation laws -- 2.2.3 Linear scalar equation -- 2.2.4 Solution of a linear system -- 2.2.5 Nonlinear scalar equation -- 2.2.6 Piston problem -- 2.2.7 Complementary Riemann invariants -- 2.2.8 Solution of the piston problem -- 2.2.9 Cauchy problem for a symmetric hyperbolic system -- 2.2.10 Approximations -- 2.2.11 Existence of approximations -- 2.2.12 Energy estimate -- 2.2.13 Convergence of approximations to a generalized solution -- 2.2.14 Regularity of the generalized solution. 
903 |a EBC-AC 
994 |a 92  |b HCD