Chemistry and physics of mechanical hardness / John J. Gilman.

Hardness is one the most important properties of solid materials and requires a comprehensive treatment. There are books on hardness testing and on the hardnesses of particular types of materials, but there are none that treat the physics and chemistry of the subject in a general way. Atomic Basis o...

Full description

Saved in:
Bibliographic Details
Main Author: Gilman, John J. (John Joseph)
Format: eBook
Language:English
Published: Hoboken, N.J. : Wiley, ©2009.
Subjects:
Online Access:Click for online access
Table of Contents:
  • CHEMISTRY AND PHYSICS OF MECHANICAL HARDNESS
  • TABLE OF CONTENTS
  • Preface
  • 1 Introduction
  • 1.1 Why Hardness Matters (A Short History)
  • 1.2 Purpose of This Book
  • 1.3 The Nature of Hardness
  • References
  • 2 Indentation
  • 2.1 Introduction
  • 2.2 The Chin-Gilman Parameter
  • 2.3 What Does Indentation Hardness Measure?
  • 2.4 Indentation Size Effect
  • 2.5 Indentation Size (From Macro to Nano)
  • 2.6 Indentation vs. Scratch Hardness
  • 2.7 Blunt or Soft Indenters
  • 2.8 Anisotropy
  • 2.9 Indenter and Specimen Surfaces
  • References
  • 3 Chemical Bonding
  • 3.1 Forms of Bonding
  • 3.2 Atoms
  • 3.3 State Symmetries
  • 3.4 Molecular Bonding (Hydrogen)
  • 3.5 Covalent Bonds
  • 3.6 Bonding in Solids
  • 3.6.1 Ionic Bonding
  • 3.6.2 Metallic Bonding
  • 3.6.3 Covalent Crystals
  • 3.7 Electrodynamic Bonding
  • 3.8 Polarizability
  • References
  • 4 Plastic Deformation
  • 4.1 Introduction
  • 4.2 Dislocation Movement
  • 4.3 Importance of Symmetry
  • 4.4 Local Inelastic Shearing of Atoms
  • 4.5 Dislocation Multiplication
  • 4.6 Individual Dislocation Velocities (Microscopic Distances)
  • 4.7 Viscous Drag
  • 4.7.1 Pure Metals
  • 4.7.2 Covalent Crystals
  • 4.8 Deformation-Softening and Elastic Relaxation
  • 4.9 Macroscopic Plastic Deformation
  • References
  • 5 Covalent Semiconductors
  • 5.1 Introduction
  • 5.2 Octahedral Shear Stiffness
  • 5.3 Chemical Bonds and Dislocation Mobility
  • 5.4 Behavior of Kinks
  • 5.5 Effect of Polarity
  • 5.6 Photoplasticity
  • 5.7 Surface Environments
  • 5.8 Effect of Temperature
  • 5.9 Doping Effects
  • References
  • 6 Simple Metals and Alloys
  • 6.1 Intrinsic Behavior
  • 6.2 Extrinsic Sources of Plastic Resistance
  • 6.2.1 Deformation-Hardening
  • 6.2.2 Impurity Atoms (Alloying)
  • 6.2.3 Precipitates (Clusters, Needles, and Platelets)
  • 6.2.4 Grain-Boundaries
  • 6.2.5 Surface Films (Such as Oxides).
  • 6.2.6 Magnetic Domain Walls
  • 6.2.7 Ferroelectric Domain-Walls
  • 6.2.8 Twin Boundaries
  • References
  • 7 Transition Metals
  • 7.1 Introduction
  • 7.2 Rare Earth Metals
  • References
  • 8 Intermetallic Compounds
  • 8.1 Introduction
  • 8.2 Crystal Structures
  • 8.2.1 Sigma Phase
  • 8.2.2 Laves Phases
  • 8.2.3 Ni(3)Al
  • 8.3 Calculated Hardness of NiAl
  • 8.4 Superconducting Intermetallic Compounds
  • 8.5 Transition Metal Compounds
  • References
  • 9 Ionic Crystals
  • 9.1 Alkali Halides
  • 9.2 Glide in the NaCl Structure
  • 9.3 Alkali Halide Alloys
  • 9.4 Glide in CsCl Structure
  • 9.5 Effect of Imputities
  • 9.6 Alkaline Earth Fluorides
  • 9.7 Alkaline Earth Sulfides
  • 9.8 Photomechanical Effects
  • 9.9 Effects of Applied Electric Fields
  • 9.10 Magneto-Plasticity
  • References
  • 10 Metal-Metalloids (Hard Metals)
  • 10.1 Introduction
  • 10.2 Carbides
  • 10.3 Tungsten Carbide
  • 10.4 Borides
  • 10.5 Titanium Diboride
  • 10.6 Rare Metal Diborides
  • 10.7 Hexaborides
  • 10.8 Boron Carbide (Carbon Quasi-Hexaboride)
  • 10.9 Nitrides
  • References
  • 11 Oxides
  • 11.1 Introduction
  • 11.2 Silicates
  • 11.2.1 Quartz
  • 11.2.2 Hydrolytic Catalysis
  • 11.2.3 Talc
  • 11.3 Cubic Oxides
  • 11.3.1 Alkaline Earth Oxides
  • 11.3.2 Perovskites
  • 11.3.3 Garnets
  • 11.3.3.1 (Y(3)Al(5)O(12))-YAG
  • 11.4 Hexagonal (Rhombohedral) Oxides
  • 11.4.1 Aluminum Oxide (Sapphire)
  • 11.4.2 Hexaboron Oxide
  • 11.5 Comparison of Transition Metal Oxides with "Hard Metals"
  • References
  • 12 Molecular Crystals
  • 12.1 Introduction
  • 12.2 Anthracene
  • 12.3 Sucrose
  • 12.4 Amino Acids
  • 12.5 Protein Crystals
  • 12.6 Energetic Crystals (Explosives)
  • 12.7 Commentary
  • References
  • 13 Polymers
  • 13.1 Introduction
  • 13.2 Thermosetting Resins (Phenolic and Epoxide)
  • 13.3 Thermoplastic Polymers
  • 13.4 Mechanisms of Inelastic Plasticity
  • 13.5 "Natural" Polymers (Plants).
  • 13.6 "Natural" Polymers (Animals)
  • References
  • 14 Glasses
  • 14.1 Introduction
  • 14.2 Inorganic Glasses
  • 14.3 Metallic Glasses
  • 14.3.1 Hardness-Shear Modulus Relationship
  • 14.3.2 Stable Compositions
  • References
  • 15 Hot Hardness
  • 15.1 Introduction
  • 15.2 Nickel Aluminide versus Oxides
  • 15.3 Other Hard Compounds
  • 15.4 Metals
  • 15.5 Intermetallic Compounds
  • References
  • 16 Chemical Hardness
  • 16.1 Introduction
  • 16.2 Definition of Chemical Hardness
  • 16.3 Physical (Mechanical) Hardness
  • 16.4 Hardness and Electronic Stability
  • 16.5 Chemical and Elastic Hardness (Stiffness)
  • 16.6 Band Gap Density and Polarizability
  • 16.7 Compression Induced Structure Changes
  • 16.8 Summary
  • References
  • 17 "Superhard" Materials
  • 17.1 Introduction
  • 17.2 Principles for High Hardness
  • 17.3 Friction at High Loads
  • 17.4 Superhard Materials
  • References
  • Index.