Global Attractors of Non-Autonomous Dissipative Dynamical Systems.

The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor.

Saved in:
Bibliographic Details
Main Author: Cheban, David N.
Format: Electronic
Language:English
Published: Singapore : World Scientific, 2004.
Series:Interdisciplinary mathematical sciences ; v. 1.
Subjects:
Online Access:Click for online access
LEADER 02360cam a2200409Mu 4500
001 ocn475932006
003 OCoLC
005 20240121213020.0
006 m o d
007 cr mn|---|||||
008 091207s2004 si ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d MHW  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d OCLCO  |d ICG  |d AU@  |d OCLCQ  |d TKN  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9789812563088  |q (electronic bk.) 
020 |a 9812563083  |q (electronic bk.) 
020 |z 9812560289 
035 |a (OCoLC)475932006 
050 4 |a QA614.813 
049 |a HCDD 
100 1 |a Cheban, David N. 
245 1 0 |a Global Attractors of Non-Autonomous Dissipative Dynamical Systems. 
260 |a Singapore :  |b World Scientific,  |c 2004. 
300 |a 1 online resource (524 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Interdisciplinary mathematical sciences ;  |v v. 1 
520 |a The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor. 
588 0 |a Print version record. 
505 0 |a Preface; Contents; Notations; Autonomous dynamical systems; Non-autonomous dissipative dynamical systems; Analytic dissipative systems; The structure of the Levinson center of system with the condition of the hyperbolicity; Method of Lyapunov functions; Dissipativity of some classes of equations; Upper semi-continuity of attractors; The relationship between pullback, forward and global attractors; Pullback attractors of C-analytic systems; Pullback attractors under discretization; Global attractors of non-autonomous Global attractors of non-autonomous. 
504 |a Includes bibliographical references (pages 481-500) and index. 
650 0 |a Attractors (Mathematics) 
650 7 |a Attractors (Mathematics)  |2 fast 
776 1 |z 9789812560285 
830 0 |a Interdisciplinary mathematical sciences ;  |v v. 1. 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=224816  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD