Practical reliability engineering and analysis for system design and life-cycle sustainment / William Wessels.

In today's sophisticated world, reliability stands as the ultimate arbiter of quality. An understanding of reliability and the ultimate compromise of failure is essential for determining the value of most modern products and absolutely critical to others, large or small. Whether lives are depen...

Full description

Saved in:
Bibliographic Details
Main Author: Wessels, William R.
Format: eBook
Language:English
Published: Boca Raton, FL : CRC Press, 2010.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 a 4500
001 ocn666416288
003 OCoLC
005 20240909213021.0
006 m o d
007 cr |||||||||||
008 100928s2010 flua ob 001 0 eng d
010 |z  2009051339 
040 |a CUS  |b eng  |e pn  |c CUS  |d VPI  |d EBLCP  |d E7B  |d YDXCP  |d OCLCQ  |d FER  |d DEBSZ  |d OCLCQ  |d N$T  |d OCLCF  |d IDEBK  |d CRCPR  |d IL4J6  |d CEF  |d UBF  |d AU@  |d OCLCQ  |d PIFBY  |d OTZ  |d OCLCQ  |d UAB  |d OCLCQ  |d U3W  |d OCLCQ  |d NLE  |d UKMGB  |d WYU  |d S9I  |d TYFRS  |d LEAUB  |d OCLCQ  |d UHL  |d LOA  |d OCLCQ  |d VT2  |d K6U  |d OCLCQ  |d UKAHL  |d LVT  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCL 
015 |a GBB7A9949  |2 bnb 
016 7 |a 018392580  |2 Uk 
019 |a 647929884  |a 694520262  |a 781276384  |a 1018082578  |a 1065900232  |a 1122501205  |a 1129370243  |a 1135604491  |a 1135832050  |a 1152643752  |a 1228606288 
020 |a 9781420094404  |q (electronic bk.) 
020 |a 1420094408  |q (electronic bk.) 
020 |z 9781420094398  |q (hard back ;  |q alk. paper) 
020 |z 1420094394  |q (hard back ;  |q alk. paper) 
024 7 |a 10.1201/9781420094404  |2 doi 
035 |a (OCoLC)666416288  |z (OCoLC)647929884  |z (OCoLC)694520262  |z (OCoLC)781276384  |z (OCoLC)1018082578  |z (OCoLC)1065900232  |z (OCoLC)1122501205  |z (OCoLC)1129370243  |z (OCoLC)1135604491  |z (OCoLC)1135832050  |z (OCoLC)1152643752  |z (OCoLC)1228606288 
037 |a TANDF_190171  |b Ingram Content Group 
050 4 |a TS173  |b .W45 2010 
072 7 |a TEC  |x 009000  |2 bisacsh 
072 7 |a TEC  |x 035000  |2 bisacsh 
049 |a HCDD 
100 1 |a Wessels, William R. 
245 1 0 |a Practical reliability engineering and analysis for system design and life-cycle sustainment /  |c William Wessels. 
260 |a Boca Raton, FL :  |b CRC Press,  |c 2010. 
300 |a 1 online resource (xxxiii, 463 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Preface; The Author; List of Tables; List of Figures; ; Requirements for Reliability Engineering: Design for Reliability, Reliability Systems Integration, 
505 0 |a And Reliability-Based System Sustainment; Introduction; Part Reliability; Failure Mechanisms; Failure Modes; Failure Effects--Local Failure Effects--Next Higher Failure Effects--System (End Effect) Failure Modes and Effects Analysis Criticality Analysis System End Effects P-F Interval Operator Awareness of Degradation; Maintainability and Maintainability Engineering ; Fault Detection; Fault Isolation; Part Mean Time to Repair; Administrative and Logistical Downtime; Part and System Availability ; Reliability in an Organization; The Need for Change in Conventional Organizational Structure; Proposed Organization Structure; Design for Reliability: Reliability Engineering Requirements for Part Design; Design Requirement for a System ; Systems Engineering Work Breakdown Structure; Lowest Replaceable Unit, LRU, Reliability Allocations; Conditions of Use, 
505 0 |a Mission Duration, and Maintainability Allocations; Functional Design Analysis; Functional Reliability Block Diagram; Functional LRU Failure Modes and Effects Analysis; Functional LRU Criticality/Consequences Analysis and Critical Items List; Design Trade Studies; LRU Nondestructive Examination and Math Modeling; Preliminary LRU Failure Mechanisms: Modes and Effects Analysis; Preliminary LRU Criticality/Consequences Analysis and Critical Items List; Preliminary Design Bills of Materials and Drawings; Preliminary Reliability Block Diagram and Math Modeling; Preliminary LRU Reliability, Maintainability, and Availability Estimates; Design Tests and Evaluation; Reliability Experiments and Math Modeling; Design LRU Failure Mechanisms Modes and Effects Analysis; Design LRU Criticality/Consequences Analysis and Critical Items List; Final Design Analysis, Bills of Materials, 
505 0 |a And Drawings; Final Design Reliability Block Diagram and Math Modeling; Final LRU Failure Mechanisms Modes and Effects Analysis; Design Reviews; Reliability Systems Engineering Requirements for System Integration; Part/LRU-to-Assembly Integration; Part/LRU-to-Assembly Reliability, Maintainability, and Availability Model; Assembly Design Review; Design Modification; Reliability Growth; Assembly-to-Subsystem Integration; Assembly-to-Subsystem Reliability, Maintainability, and Availability Model; Design Review; Design Modification; Reliability Growth; Subsystem-to-System Integration; Subsystem-to-System Reliability, Maintainability, 
505 0 |a And Availability Model; Design Review; Design Modification; Reliability Growth; System Demonstration; Reliability and Maintainability Demonstration; System Baseline; Configuration Management; Reliability Engineering Requirements for System Sustainment ; System Sustainment; Repair Maintenance; Logistical Support; Database Requirements; Notes ; ; Part/LRU Reliability Modeling for Time-to Failure Data ; Introduction; Part Candidate for Reliability Engineering and Analysis; Hypothesize Part Failure Mechanisms; Part Failure Modes Analysis; Part Failure Effects Analysis; Critical Items List; Part/LRU Reliability Analysis: Understanding Failure of a Part/LRU; Qualitative Part/LRU Investigation; Part/LRU Design Parameters Fall in One of Three Criteria; Quantitative Part/LRU Investigation; TTF and TTR Frequency Distribution and Probability Density; Function of Part/LRU 
505 0 |a Failure; Cumulative Frequency Distribution; TTF Survival Function of a Part/LRU; TTF Instantaneous Part/LRU Failure Rate: The Hazard Function. 3; TTF Reliability Function of a Part/LRU; Part/LRU Time-to-Failure Characterization of Reliability Parameters; Part/LRU Historical Part Failure Data; Part/LRU Reliability Experiments; Time-Censored Experimental Part/LRU Failure Data; Interval-Censored Experiment; Failure-Censored Experimental Part/LRU Failure Data; Failure-Free Experimental Part Data; Maintainability Analysis Functions of a Part/LRU; Resource Requirements for a Part/LRU; Inherent Availability of a Part/LRU; Notes; ; Reliability Failure Modeling Based on Time-to-Failure Data ; Introduction; Part Reliability Failure Modeling; Candidate for Reliability Engineering and Analysis; Experimental Design for TTF; Exponential Probability Distribution 
505 0 |a Approach; Spreadsheet Approach; Exponential Distribution: Minitab; Weibull Distribution Approach ; Spreadsheet Approach; Weibull Distribution: Minitab; Weibull Distribution: MathCAD Approach; Pump Failure Math Model; Triangular Distribution; Notes ; ; Part Maintainability and Availability ; Introduction; Part Mean Time to Repair; Maintenance Experiment ; Excel Spreadsheet Approach; Minitab Approach; MathCAD Approach; Empirical Data; Part and System Availability ; Inherent Availability; Instantaneous Availability; Operational Availability; Achieved Availability; Notes ; ; Part Reliability Based on Stress-Strength Analysis ; Introduction; Part Stress; Part Failure; Time-to-Failure Reliability Functions; Example TTF Reliability Functions for Hex Bolt; Exponential Failure 
505 0 |a Distribution Approach; Single Failure Mechanism Weibull Model Approach; Multiple Failure Mechanism Weibull Model Approach; Comparative Evaluation of Exponential, Single Weibull, and Multiple Failure Mechanism Weibull Model Approaches Using TTF Data; Part Stress and Strength: Interference Theory ; Normal Stress-Normal Strength Normal Stress-Weibull Strength Weibull Stress-Weibull Strength Triangular Stress-Weibull Strength Stress-Strength Reliability of the Bolt in Tension and Shear Nondeterministic, 
505 0 |a Variable Approach Advantages and Disadvantages for Stress-Strength Analysis Approach; Notes; ; Reliability Engineering Functions from Stress-Strength Analysis ; Introduction; Frequency Distributions of the Mechanisms of Failure; Design for Reliability; Phase I: 1-Operational-Day Test Simulation Period; Phase II: 1-Operational-Year Test Simulation Period; Phase III: 2-Operational-Year Test Simulation Period; Design for Reliability by Analysis ; Material in Tension; Notes; ; Failure Modeling Based on Failure Mechanisms ; Introduction; Normal Distribution Stress-Normal Distribution Strength1 ; Normal Distribution Stress-Weibull Distribution Strength; Weibull Distributed Stress-Weibull Distribution Strength; Triangular Distribution Stress-Triangular Distribution 
505 0 |a Strength; Notes; ; Reliability Modeling for Assembly Design Levels ; Introduction; Reliability Allocation; Reliability Math Model; Math Modeling for Design Configurations of Assemblies; Series Design Configuration; Parallel Design Configuration; n -Provided, r -Required Redundancy; Standby Redundancy ; Equal Reliability: Perfect Switch; Unequal Reliability: Perfect Switch; Equal Reliability: Imperfect Switch; Unequal Reliability: Imperfect Switch; Shared Load Redundancy 7 ; Notes; ; Reliability Analysis for System of Systems ; Introduction; Multiple-Missions System of System; Simple Single-Mission System of Systems; Complex Single-Mission System of Systems; System of Systems Compared; Notes; ; Reliability-Centered Maintena 
520 |a In today's sophisticated world, reliability stands as the ultimate arbiter of quality. An understanding of reliability and the ultimate compromise of failure is essential for determining the value of most modern products and absolutely critical to others, large or small. Whether lives are dependent on the performance of a heat shield or a chip in a lab, random failure is never an acceptable outcome. Written for practicing engineers, Practical Reliability Engineering and Analysis for System Design and Life-Cycle Sustainment departs from the mainstream approach for ti. 
650 0 |a Reliability (Engineering) 
650 0 |a Product life cycle. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Engineering (General)  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Reference.  |2 bisacsh 
650 7 |a Product life cycle  |2 fast 
650 7 |a Reliability (Engineering)  |2 fast 
758 |i has work:  |a Practical reliability engineering and analysis for system design and life-cycle sustainment (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFPMMHH8Jp4WVmkVkxTBHd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Wessels, William R.  |t Practical reliability engineering and analysis for system design and life-cycle sustainment.  |d Boca Raton, FL : CRC Press, 2010  |z 9781420094398  |w (DLC) 2009051339  |w (OCoLC)232981605 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=533784  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD