Practical reliability engineering and analysis for system design and life-cycle sustainment / William Wessels.

In today's sophisticated world, reliability stands as the ultimate arbiter of quality. An understanding of reliability and the ultimate compromise of failure is essential for determining the value of most modern products and absolutely critical to others, large or small. Whether lives are depen...

Full description

Saved in:
Bibliographic Details
Main Author: Wessels, William R.
Format: eBook
Language:English
Published: Boca Raton, FL : CRC Press, 2010.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Preface; The Author; List of Tables; List of Figures; ; Requirements for Reliability Engineering: Design for Reliability, Reliability Systems Integration,
  • And Reliability-Based System Sustainment; Introduction; Part Reliability; Failure Mechanisms; Failure Modes; Failure Effects--Local Failure Effects--Next Higher Failure Effects--System (End Effect) Failure Modes and Effects Analysis Criticality Analysis System End Effects P-F Interval Operator Awareness of Degradation; Maintainability and Maintainability Engineering ; Fault Detection; Fault Isolation; Part Mean Time to Repair; Administrative and Logistical Downtime; Part and System Availability ; Reliability in an Organization; The Need for Change in Conventional Organizational Structure; Proposed Organization Structure; Design for Reliability: Reliability Engineering Requirements for Part Design; Design Requirement for a System ; Systems Engineering Work Breakdown Structure; Lowest Replaceable Unit, LRU, Reliability Allocations; Conditions of Use,
  • Mission Duration, and Maintainability Allocations; Functional Design Analysis; Functional Reliability Block Diagram; Functional LRU Failure Modes and Effects Analysis; Functional LRU Criticality/Consequences Analysis and Critical Items List; Design Trade Studies; LRU Nondestructive Examination and Math Modeling; Preliminary LRU Failure Mechanisms: Modes and Effects Analysis; Preliminary LRU Criticality/Consequences Analysis and Critical Items List; Preliminary Design Bills of Materials and Drawings; Preliminary Reliability Block Diagram and Math Modeling; Preliminary LRU Reliability, Maintainability, and Availability Estimates; Design Tests and Evaluation; Reliability Experiments and Math Modeling; Design LRU Failure Mechanisms Modes and Effects Analysis; Design LRU Criticality/Consequences Analysis and Critical Items List; Final Design Analysis, Bills of Materials,
  • And Drawings; Final Design Reliability Block Diagram and Math Modeling; Final LRU Failure Mechanisms Modes and Effects Analysis; Design Reviews; Reliability Systems Engineering Requirements for System Integration; Part/LRU-to-Assembly Integration; Part/LRU-to-Assembly Reliability, Maintainability, and Availability Model; Assembly Design Review; Design Modification; Reliability Growth; Assembly-to-Subsystem Integration; Assembly-to-Subsystem Reliability, Maintainability, and Availability Model; Design Review; Design Modification; Reliability Growth; Subsystem-to-System Integration; Subsystem-to-System Reliability, Maintainability,
  • And Availability Model; Design Review; Design Modification; Reliability Growth; System Demonstration; Reliability and Maintainability Demonstration; System Baseline; Configuration Management; Reliability Engineering Requirements for System Sustainment ; System Sustainment; Repair Maintenance; Logistical Support; Database Requirements; Notes ; ; Part/LRU Reliability Modeling for Time-to Failure Data ; Introduction; Part Candidate for Reliability Engineering and Analysis; Hypothesize Part Failure Mechanisms; Part Failure Modes Analysis; Part Failure Effects Analysis; Critical Items List; Part/LRU Reliability Analysis: Understanding Failure of a Part/LRU; Qualitative Part/LRU Investigation; Part/LRU Design Parameters Fall in One of Three Criteria; Quantitative Part/LRU Investigation; TTF and TTR Frequency Distribution and Probability Density; Function of Part/LRU
  • Failure; Cumulative Frequency Distribution; TTF Survival Function of a Part/LRU; TTF Instantaneous Part/LRU Failure Rate: The Hazard Function. 3; TTF Reliability Function of a Part/LRU; Part/LRU Time-to-Failure Characterization of Reliability Parameters; Part/LRU Historical Part Failure Data; Part/LRU Reliability Experiments; Time-Censored Experimental Part/LRU Failure Data; Interval-Censored Experiment; Failure-Censored Experimental Part/LRU Failure Data; Failure-Free Experimental Part Data; Maintainability Analysis Functions of a Part/LRU; Resource Requirements for a Part/LRU; Inherent Availability of a Part/LRU; Notes; ; Reliability Failure Modeling Based on Time-to-Failure Data ; Introduction; Part Reliability Failure Modeling; Candidate for Reliability Engineering and Analysis; Experimental Design for TTF; Exponential Probability Distribution
  • Approach; Spreadsheet Approach; Exponential Distribution: Minitab; Weibull Distribution Approach ; Spreadsheet Approach; Weibull Distribution: Minitab; Weibull Distribution: MathCAD Approach; Pump Failure Math Model; Triangular Distribution; Notes ; ; Part Maintainability and Availability ; Introduction; Part Mean Time to Repair; Maintenance Experiment ; Excel Spreadsheet Approach; Minitab Approach; MathCAD Approach; Empirical Data; Part and System Availability ; Inherent Availability; Instantaneous Availability; Operational Availability; Achieved Availability; Notes ; ; Part Reliability Based on Stress-Strength Analysis ; Introduction; Part Stress; Part Failure; Time-to-Failure Reliability Functions; Example TTF Reliability Functions for Hex Bolt; Exponential Failure
  • Distribution Approach; Single Failure Mechanism Weibull Model Approach; Multiple Failure Mechanism Weibull Model Approach; Comparative Evaluation of Exponential, Single Weibull, and Multiple Failure Mechanism Weibull Model Approaches Using TTF Data; Part Stress and Strength: Interference Theory ; Normal Stress-Normal Strength Normal Stress-Weibull Strength Weibull Stress-Weibull Strength Triangular Stress-Weibull Strength Stress-Strength Reliability of the Bolt in Tension and Shear Nondeterministic,
  • Variable Approach Advantages and Disadvantages for Stress-Strength Analysis Approach; Notes; ; Reliability Engineering Functions from Stress-Strength Analysis ; Introduction; Frequency Distributions of the Mechanisms of Failure; Design for Reliability; Phase I: 1-Operational-Day Test Simulation Period; Phase II: 1-Operational-Year Test Simulation Period; Phase III: 2-Operational-Year Test Simulation Period; Design for Reliability by Analysis ; Material in Tension; Notes; ; Failure Modeling Based on Failure Mechanisms ; Introduction; Normal Distribution Stress-Normal Distribution Strength1 ; Normal Distribution Stress-Weibull Distribution Strength; Weibull Distributed Stress-Weibull Distribution Strength; Triangular Distribution Stress-Triangular Distribution
  • Strength; Notes; ; Reliability Modeling for Assembly Design Levels ; Introduction; Reliability Allocation; Reliability Math Model; Math Modeling for Design Configurations of Assemblies; Series Design Configuration; Parallel Design Configuration; n -Provided, r -Required Redundancy; Standby Redundancy ; Equal Reliability: Perfect Switch; Unequal Reliability: Perfect Switch; Equal Reliability: Imperfect Switch; Unequal Reliability: Imperfect Switch; Shared Load Redundancy 7 ; Notes; ; Reliability Analysis for System of Systems ; Introduction; Multiple-Missions System of System; Simple Single-Mission System of Systems; Complex Single-Mission System of Systems; System of Systems Compared; Notes; ; Reliability-Centered Maintena