Affine Bernstein problems and Monge-Ampère equations / An-Min Li [and others].

In this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It is well-known that many geometric problems in analytic formulation lead to important classes of PDEs. The focus of this monograph is on variational problems and higher order PDEs...

Full description

Saved in:
Bibliographic Details
Other Authors: Li, An-Min, 1946-
Format: eBook
Language:English
Published: New Jersey : World Scientific, ©2010.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 a 4500
001 ocn670429445
003 OCoLC
005 20241006213017.0
006 m o d
007 cr mnu---unuuu
008 101018s2010 njua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OSU  |d E7B  |d OCLCQ  |d YDXCP  |d EBLCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d MHW  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AGLDB  |d ZCU  |d MERUC  |d OCLCQ  |d NJR  |d U3W  |d OCLCQ  |d VTS  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d JBG  |d STF  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ  |d OCLCL 
016 7 |a 015536167  |2 Uk 
019 |a 1055354349  |a 1065046179  |a 1081296920 
020 |a 9789812814173  |q (electronic bk.) 
020 |a 9812814175  |q (electronic bk.) 
020 |z 9789812814166 
020 |z 9812814167 
035 |a (OCoLC)670429445  |z (OCoLC)1055354349  |z (OCoLC)1065046179  |z (OCoLC)1081296920 
050 4 |a QA643  |b .A34 2010eb 
072 7 |a MAT  |x 012030  |2 bisacsh 
049 |a HCDD 
245 0 0 |a Affine Bernstein problems and Monge-Ampère equations /  |c An-Min Li [and others]. 
260 |a New Jersey :  |b World Scientific,  |c ©2010. 
300 |a 1 online resource (xii, 180 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 173-177) and index. 
505 0 |a Basic tools -- Local equiaffine hypersurfaces -- Local relative hypersurfaces -- The theorem of Jörgens-Calabi-Pogorelov -- Affine maximal hypersurfaces -- Hypersurfaces with constant affine mean curvature. 
588 0 |a Print version record. 
520 |a In this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It is well-known that many geometric problems in analytic formulation lead to important classes of PDEs. The focus of this monograph is on variational problems and higher order PDEs for affine hypersurfaces. Affine maximal hypersurfaces are extremals of the interior variation of the affinely invariant volume. The corresponding Euler-Lagrange equation is a highly complicated nonlinear fourth order PDE. In recent years, the global study of such fourth order PDEs has received con. 
650 0 |a Affine differential geometry. 
650 0 |a Monge-Ampère equations. 
650 7 |a MATHEMATICS  |x Geometry  |x Differential.  |2 bisacsh 
650 7 |a Affine differential geometry  |2 fast 
650 7 |a Monge-Ampère equations  |2 fast 
700 1 |a Li, An-Min,  |d 1946-  |1 https://id.oclc.org/worldcat/entity/E39PCjMpqVW88db98kwxWMrhjK 
758 |i has work:  |a Affine Bernstein problems and Monge-Ampère equations (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGXXw76KDg867BKGfqhM8C  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Affine Bernstein problems and Monge-Ampère equations.  |d Singapore ; Hackensack, NJ : World Scientific, ©2010  |z 9789812814166  |w (OCoLC)619946367 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=731103  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD