|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
ocn670429445 |
003 |
OCoLC |
005 |
20241006213017.0 |
006 |
m o d |
007 |
cr mnu---unuuu |
008 |
101018s2010 njua ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d OSU
|d E7B
|d OCLCQ
|d YDXCP
|d EBLCP
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d MHW
|d OCLCQ
|d OCLCF
|d OCLCQ
|d AGLDB
|d ZCU
|d MERUC
|d OCLCQ
|d NJR
|d U3W
|d OCLCQ
|d VTS
|d ICG
|d INT
|d VT2
|d OCLCQ
|d WYU
|d JBG
|d STF
|d OCLCQ
|d DKC
|d OCLCQ
|d M8D
|d UKAHL
|d OCLCQ
|d AJS
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|d OCLCQ
|d OCLCL
|
016 |
7 |
|
|a 015536167
|2 Uk
|
019 |
|
|
|a 1055354349
|a 1065046179
|a 1081296920
|
020 |
|
|
|a 9789812814173
|q (electronic bk.)
|
020 |
|
|
|a 9812814175
|q (electronic bk.)
|
020 |
|
|
|z 9789812814166
|
020 |
|
|
|z 9812814167
|
035 |
|
|
|a (OCoLC)670429445
|z (OCoLC)1055354349
|z (OCoLC)1065046179
|z (OCoLC)1081296920
|
050 |
|
4 |
|a QA643
|b .A34 2010eb
|
072 |
|
7 |
|a MAT
|x 012030
|2 bisacsh
|
049 |
|
|
|a HCDD
|
245 |
0 |
0 |
|a Affine Bernstein problems and Monge-Ampère equations /
|c An-Min Li [and others].
|
260 |
|
|
|a New Jersey :
|b World Scientific,
|c ©2010.
|
300 |
|
|
|a 1 online resource (xii, 180 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references (pages 173-177) and index.
|
505 |
0 |
|
|a Basic tools -- Local equiaffine hypersurfaces -- Local relative hypersurfaces -- The theorem of Jörgens-Calabi-Pogorelov -- Affine maximal hypersurfaces -- Hypersurfaces with constant affine mean curvature.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a In this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It is well-known that many geometric problems in analytic formulation lead to important classes of PDEs. The focus of this monograph is on variational problems and higher order PDEs for affine hypersurfaces. Affine maximal hypersurfaces are extremals of the interior variation of the affinely invariant volume. The corresponding Euler-Lagrange equation is a highly complicated nonlinear fourth order PDE. In recent years, the global study of such fourth order PDEs has received con.
|
650 |
|
0 |
|a Affine differential geometry.
|
650 |
|
0 |
|a Monge-Ampère equations.
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x Differential.
|2 bisacsh
|
650 |
|
7 |
|a Affine differential geometry
|2 fast
|
650 |
|
7 |
|a Monge-Ampère equations
|2 fast
|
700 |
1 |
|
|a Li, An-Min,
|d 1946-
|1 https://id.oclc.org/worldcat/entity/E39PCjMpqVW88db98kwxWMrhjK
|
758 |
|
|
|i has work:
|a Affine Bernstein problems and Monge-Ampère equations (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGXXw76KDg867BKGfqhM8C
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|t Affine Bernstein problems and Monge-Ampère equations.
|d Singapore ; Hackensack, NJ : World Scientific, ©2010
|z 9789812814166
|w (OCoLC)619946367
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=731103
|y Click for online access
|
903 |
|
|
|a EBC-AC
|
994 |
|
|
|a 92
|b HCD
|