Summary: | Random matrix theory has a long history, beginning in the first instance in multivariate statistics. It was used by Wigner to supply explanations for the important regularity features of the apparently random dispositions of the energy levels of heavy nuclei. The subject was further deeply developed under the important leadership of Dyson, Gaudin and Mehta, and other mathematical physicists. In the early 1990s, random matrix theory witnessed applications in string theory and deep connections with operator theory, and the integrable systems were established by Tracy and Widom. More recently, th.
|