Random matrix theory and its applications : multivariate statistics and wireless communications / editors, Zhidong Bai, Yang Chen, Ying-Chang Liang.

Random matrix theory has a long history, beginning in the first instance in multivariate statistics. It was used by Wigner to supply explanations for the important regularity features of the apparently random dispositions of the energy levels of heavy nuclei. The subject was further deeply developed...

Full description

Saved in:
Bibliographic Details
Other Authors: Bai, Zhidong, Chen, Yang, Liang, Ying-Chang
Format: eBook
Language:English
Published: Hackensack, NJ : World Scientific, ©2009.
Series:Lecture notes series (National University of Singapore. Institute for Mathematical Sciences) ; v. 18.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 a 4500
001 ocn671648582
003 OCoLC
005 20241006213017.0
006 m o d
007 cr cnu---unuuu
008 101025s2009 njua ob 000 0 eng d
010 |a  2009282238 
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d E7B  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d MHW  |d NLGGC  |d OCLCO  |d IDEBK  |d EBLCP  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AZK  |d JBG  |d AGLDB  |d MOR  |d CCO  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d OCLCQ  |d VTS  |d ICG  |d INT  |d VT2  |d OCLCQ  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d UKCRE  |d VLY  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
019 |a 712995076  |a 729020083  |a 764546211  |a 816581923  |a 961535057  |a 962632115  |a 988409658  |a 992059729  |a 1037785989  |a 1038685841  |a 1055395257  |a 1058147851  |a 1081238017  |a 1153546180  |a 1162524608  |a 1228570602  |a 1240509826  |a 1241927324  |a 1249220552  |a 1253416534  |a 1259072021  |a 1272921725  |a 1290077334  |a 1300493845 
020 |a 9789814273121  |q (electronic bk.) 
020 |a 9814273120  |q (electronic bk.) 
020 |z 9789814273114 
020 |z 9814273112 
020 |a 1282758047 
020 |a 9781282758049 
020 |a 9786612758041 
020 |a 661275804X 
035 |a (OCoLC)671648582  |z (OCoLC)712995076  |z (OCoLC)729020083  |z (OCoLC)764546211  |z (OCoLC)816581923  |z (OCoLC)961535057  |z (OCoLC)962632115  |z (OCoLC)988409658  |z (OCoLC)992059729  |z (OCoLC)1037785989  |z (OCoLC)1038685841  |z (OCoLC)1055395257  |z (OCoLC)1058147851  |z (OCoLC)1081238017  |z (OCoLC)1153546180  |z (OCoLC)1162524608  |z (OCoLC)1228570602  |z (OCoLC)1240509826  |z (OCoLC)1241927324  |z (OCoLC)1249220552  |z (OCoLC)1253416534  |z (OCoLC)1259072021  |z (OCoLC)1272921725  |z (OCoLC)1290077334  |z (OCoLC)1300493845 
050 4 |a QA188  |b .R36 2009eb 
072 7 |a MAT  |x 002040  |2 bisacsh 
049 |a HCDD 
245 0 0 |a Random matrix theory and its applications :  |b multivariate statistics and wireless communications /  |c editors, Zhidong Bai, Yang Chen, Ying-Chang Liang. 
260 |a Hackensack, NJ :  |b World Scientific,  |c ©2009. 
300 |a 1 online resource (x, 165 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Lecture notes series,  |x 1793-0758 ;  |v v. 18 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
520 |a Random matrix theory has a long history, beginning in the first instance in multivariate statistics. It was used by Wigner to supply explanations for the important regularity features of the apparently random dispositions of the energy levels of heavy nuclei. The subject was further deeply developed under the important leadership of Dyson, Gaudin and Mehta, and other mathematical physicists. In the early 1990s, random matrix theory witnessed applications in string theory and deep connections with operator theory, and the integrable systems were established by Tracy and Widom. More recently, th. 
505 0 |6 880-01  |a Foreword; Preface; The Stieltjes Transform and its Role in Eigenvalue Behavior of Large Dimensional Random Matrices Jack W. Silverstein; 1. Introduction; 2. Why These Theorems are True; 3. The Other Equations; 4. Proof of Uniqueness of (1.1); 5. Truncation and Centralization; 6. The Limiting Distributions; 7. Other Uses of the Stieltjes Transform; References; Beta Random Matrix Ensembles Peter J. Forrester; 1. Introduction; 1.1. Log-gas systems; 1.2. Quantum many body systems; 1.3. Selberg correlation integrals; 1.4. Correlation functions; 1.5. Scaled limits. 
505 8 |a 2. Physical Random Matrix Ensembles2.1. Heavy nuclei and quantum mechanics; 2.2. Dirac operators and QCD; 2.3. Random scattering matrices; 2.4. Quantum conductance problems; 2.5. Eigenvalue p.d.f.'s for Hermitian matrices; 2.6. Eigenvalue p.d.f.'s for Wishart matrices; 2.7. Eigenvalue p.d.f.'s for unitary matrices; 2.8. Eigenvalue p.d.f.'s for blocks of unitary matrices; 2.9. Classical random matrix ensembles; 3.-Ensembles of Random Matrices; 3.1. Gaussian ensemble; 4. Laguerre Ensemble; 5. Recent Developments; Acknowledgments; References. 
505 8 |a Future of Statistics Zhidong Bai and Shurong Zheng1. Introduction; 2. A Multivariate Two-Sample Problem; 2.1. Asymptotic power of T 2 test; 2.2. Dempster's NET; 2.3. Bai and Saranadasa's ANT; 2.4. Conclusions and simulations; 3. A Likelihood Ratio Test on Covariance Matrix; 3.1. Classical tests; 3.2. Random matrix theory; 3.3. Testing based on RMT limiting CLT; 3.4. Simulation results; 4. Conclusions; Acknowledgment; References; The and Shannon Transforms: A Bridge between Random Matrices and Wireless Communications Antonia M. Tulino; 1. Introduction; 2. Wireless Communication Channels. 
505 8 |a 8. Example: Analysis of Large CDMA Systems8.1. Gaussian prior distribution; 8.2. Binary prior distribution; 8.3. Arbitrary prior distribution; 9. Phase Transitions; References. 
546 |a English. 
650 0 |a Random matrices. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Random matrices  |2 fast 
700 1 |a Bai, Zhidong. 
700 1 |a Chen, Yang. 
700 1 |a Liang, Ying-Chang. 
758 |i has work:  |a Random matrix theory and its applications (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGfTdVMM3rjqTQvJfKwQv3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Random matrix theory and its applications.  |d Hackensack, NJ : World Scientific, ©2009  |z 9789814273114  |w (OCoLC)298782419 
830 0 |a Lecture notes series (National University of Singapore. Institute for Mathematical Sciences) ;  |v v. 18. 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=1679389  |y Click for online access 
880 8 |6 505-01/(S  |a 3. Why Asymptotic Random Matrix Theory4. η and Shannon Transforms: Theory and Applications; 5. Applications to Wireless Communications; 5.1. CDMA; 5.1.1. DS-CDMA frequency-flat fading; 5.1.2. Multi-carrier CDMA; 5.2. Multi-antenna channels; 5.3. Separable correlation model; 5.4. Non-separable correlation model; 5.5. Non-ergodic channels; References; The Replica Method in Multiuser Communications Ralf R.M uller; 1. Introduction; 2. Self Average; 3. Free Energy; 4. The Meaning of the Energy Function; 5. Replica Continuity; 6. Saddle Point Integration; 7. Replica Symmetry. 
903 |a EBC-AC 
994 |a 92  |b HCD