Quantum computing : a gentle introduction / Eleanor Rieffel and Wolfgang Polak.

A thorough exposition of quantum computing and the underlying concepts of quantum physics, with explanations of the relevant mathematics and numerous examples.

Saved in:
Bibliographic Details
Main Author: Rieffel, Eleanor, 1965-
Other Authors: Polak, Wolfgang, 1950-
Format: eBook
Language:English
Published: Cambridge, Mass. : MIT Press, 2011.
Series:Scientific and engineering computation.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Machine generated contents note: 1. Introduction
  • I. QUANTUM BUILDING BLOCKS
  • 2. Single-Qubit Quantum Systems
  • 2.1. The Quantum Mechanics of Photon Polarization
  • 2.1.1. A Simple Experiment
  • 2.1.2. A Quantum Explanation
  • 2.2. Single Quantum Bits
  • 2.3. Single-Qubit Measurement
  • 2.4. A Quantum Key Distribution Protocol
  • 2.5. The State Space of a Single-Qubit System
  • 2.5.1. Relative Phases versus Global Phases
  • 2.5.2. Geometric Views of the State Space of a Single Qubit
  • 2.5.3. Comments on General Quantum State Spaces
  • 2.6. References
  • 2.7. Exercises
  • 3. Multiple-Qubit Systems
  • 3.1. Quantum State Spaces
  • 3.1.1. Direct Sums of Vector Spaces
  • 3.1.2. Tensor Products of Vector Spaces
  • 3.1.3. The State Space of an n-Qubit System
  • 3.2. Entangled States
  • 3.3. Basics of Multi-Qubit Measurement
  • 3.4. Quantum Key Distribution Using Entangled States
  • 3.5. References
  • 3.6. Exercises
  • 4. Measurement of Multiple-Qubit States
  • 4.1. Dirac's Bra/Ket Notation for Linear Transformations.
  • 4.2. Projection Operators for Measurement
  • 4.3. Hermitian Operator Formalism for Measurement
  • 4.3.1. The Measurement Postulate
  • 4.4. EPR Paradox and Bell's Theorem
  • 4.4.1. Setup for Bell's Theorem
  • 4.4.2. What Quantum Mechanics Predicts
  • 4.4.3. Special Case of Bell's Theorem: What Any Local Hidden Variable Theory Predicts
  • 4.4.4. Bell's Inequality
  • 4.5. References
  • 4.6. Exercises
  • 5. Quantum State Transformations
  • 5.1. Unitary Transformations
  • 5.1.1. Impossible Transformations: The No-Cloning Principle
  • 5.2. Some Simple Quantum Gates
  • 5.2.1. The Pauli Transformations
  • 5.2.2. The Hadamard Transformation
  • 5.2.3. Multiple-Qubit Transformations from Single-Qubit Transformations
  • 5.2.4. The Controlled-not and Other Singly Controlled Gates
  • 5.3. Applications of Simple Gates
  • 5.3.1. Dense Coding
  • 5.3.2. Quantum Teleportation
  • 5.4. Realizing Unitary Transformations as Quantum Circuits
  • 5.4.1. Decomposition of Single-Qubit Transformations
  • 5.4.2. Singly-Controlled Single-Qubit Transformations
  • 5.4.3. Multiply-Controlled Single-Qubit Transformations.
  • 5.4.4. General Unitary Transformations
  • 5.5. A Universally Approximating Set of Gates
  • 5.6. The Standard Circuit Model
  • 5.7. References
  • 5.8. Exercises
  • 6. Quantum Versions of Classical Computations
  • 6.1. From Reversible Classical Computations to Quantum Computations
  • 6.1.1. Reversible and Quantum Versions of Simple Classical Gates
  • 6.2. Reversible Implementations of Classical Circuits
  • 6.2.1. A Naive Reversible Implementation
  • 6.2.2. A General Construction
  • 6.3. A Language for Quantum Implementations
  • 6.3.1. The Basics
  • 6.3.2. Functions
  • 6.4. Some Example Programs for Arithmetic Operations
  • 6.4.1. Efficient Implementation of and
  • 6.4.2. Efficient Implementation of Multiply-Controlled Single-Qubit Transformations
  • 6.4.3. In-Place Addition
  • 6.4.4. Modular Addition
  • 6.4.5. Modular Multiplication
  • 6.4.6. Modular Exponentiation
  • 6.5. References
  • 6.6. Exercises
  • II. QUANTUM ALGORITHMS
  • 7. Introduction to Quantum Algorithms
  • 7.1. Computing with Superpositions
  • 7.1.1. The Walsh-Hadamard Transformation.
  • 7.1.2. Quantum Parallelism
  • 7.2. Notions of Complexity
  • 7.2.1. Query Complexity
  • 7.2.2. Communication Complexity
  • 7.3. A Simple Quantum Algorithm
  • 7.3.1. Deutsch's Problem
  • 7.4. Quantum Subroutines
  • 7.4.1. The Importance of Unentangling Temporary Qubits in Quantum Subroutines
  • 7.4.2. Phase Change for a Subset of Basis Vectors
  • 7.4.3. State-Dependent Phase Shifts
  • 7.4.4. State-Dependent Single-Qubit Amplitude Shifts
  • 7.5. A Few Simple Quantum Algorithms
  • 7.5.1. Deutsch-Jozsa Problem
  • 7.5.2. Bernstein-Vazirani Problem
  • 7.5.3. Simon's Problem
  • 7.5.4. Distributed Computation
  • 7.6. Comments on Quantum Parallelism
  • 7.7. Machine Models and Complexity Classes
  • 7.7.1. Complexity Classes
  • 7.7.2. Complexity: Known Results
  • 7.8. Quantum Fourier Transformations
  • 7.8.1. The Classical Fourier Transform
  • 7.8.2. The Quantum Fourier Transform
  • 7.8.3. A Quantum Circuit for Fast Fourier Transform
  • 7.9. References
  • 7.10. Exercises
  • 8. Shor's Algorithm
  • 8.1. Classical Reduction to Period-Finding.
  • 8.2. Shor's Factoring Algorithm
  • 8.2.1. The Quantum Core
  • 8.2.2. Classical Extraction of the Period from the Measured Value
  • 8.3. Example Illustrating Shor's Algorithm
  • 8.4. The Efficiency of Shor's Algorithm
  • 8.5. Omitting the Internal Measurement
  • 8.6. Generalizations
  • 8.6.1. The Discrete Logarithm Problem
  • 8.6.2. Hidden Subgroup Problems
  • 8.7. References
  • 8.8. Exercises
  • 9. Graver's Algorithm and Generalizations
  • 9.1. Graver's Algorithm
  • 9.1.1. Outline
  • 9.1.2. Setup
  • 9.1.3. The Iteration Step
  • 9.1.4. How Many Iterations?
  • 9.2. Amplitude Amplification
  • 9.2.1. The Geometry of Amplitude Amplification
  • 9.3. Optimality of Grover's Algorithm
  • 9.3.1. Reduction to Three Inequalities
  • 9.3.2. Proofs of the Three Inequalities
  • 9.4. Derandomization of Grover's Algorithm and Amplitude Amplification
  • 9.4.1. Approach 1: Modifying Each Step
  • 9.4.2. Approach 2: Modifying Only the Last Step
  • 9.5. Unknown Number of Solutions
  • 9.5.1. Varying the Number of Iterations
  • 9.5.2. Quantum Counting.
  • 9.6. Practical Implications of Grover's Algorithm and Amplitude Amplification
  • 9.7. References
  • 9.8. Exercises
  • III. ENTANGLED SUBSYSTEMS AND ROBUST QUANTUM COMPUTATION
  • 10. Quantum Subsystems and Properties of Entangled States
  • 10.1. Quantum Subsystems and Mixed States
  • 10.1.1. Density Operators
  • 10.1.2. Properties of Density Operators
  • 10.1.3. The Geometry of Single-Qubit Mixed States
  • 10.1.4. Von Neumann Entropy
  • 10.2. Classifying Entangled States
  • 10.2.1. Bipartite Quantum Systems
  • 10.2.2. Classifying Bipartite Pure States up to LOCC Equivalence
  • 10.2.3. Quantifying Entanglement in Bipartite Mixed States
  • 10.2.4. Multipartite Entanglement
  • 10.3. Density Operator Formalism for Measurement
  • 10.3.1. Measurement of Density Operators
  • 10.4. Transformations of Quantum Subsystems and Decoherence
  • 10.4.1. Superoperators
  • 10.4.2. Operator Sum Decomposition
  • 10.4.3. A Relation Between Quantum State Transformations and Measurements
  • 10.4.4. Decoherence
  • 10.5. References
  • 10.6. Exercises
  • 11. Quantum Error Correction.
  • 11.1. Three Simple Examples of Quantum Error Correcting Codes
  • 11.1.1. A Quantum Code That Corrects Single Bit-Flip Errors
  • 11.1.2. A Code for Single-Qubit Phase-Flip Errors
  • 11.1.3. A Code for All Single-Qubit Errors
  • 11.2. Framework for Quantum Error Correcting Codes
  • 11.2.1. Classical Error Correcting Codes
  • 11.2.2. Quantum Error Correcting Codes
  • 11.2.3. Correctable Sets of Errors for Classical Codes
  • 11.2.4. Correctable Sets of Errors for Quantum Codes
  • 11.2.5. Correcting Errors Using Classical Codes
  • 11.2.6. Diagnosing and Correcting Errors Using Quantum Codes
  • 11.2.7. Quantum Error Correction across Multiple Blocks
  • 11.2.8. Computing on Encoded Quantum States
  • 11.2.9. Superpositions and Mixtures of Correctable Errors Are Correctable
  • 11.2.10. The Classical Independent Error Model
  • 11.2.11. Quantum Independent Error Models
  • 11.3. CSS Codes
  • 11.3.1. Dual Classical Codes
  • 11.3.2. Construction of CSS Codes from Classical Codes Satisfying a Duality Condition
  • 11.3.3. The Steane Code
  • 11.4. Stabilizer Codes.
  • 13.4. Alternatives to the Circuit Model of Quantum Computation
  • 13.4.1. Measurement-Based Cluster State Quantum Computation
  • 13.4.2. Adiabatic Quantum Computation
  • 13.4.3. Holonomic Quantum Computation
  • 13.4.4. Topological Quantum Computation
  • 13.5. Quantum Protocols
  • 13.6. Insight into Classical Computation
  • 13.7. Building Quantum Computers
  • 13.8. Simulating Quantum Systems
  • 13.9. Where Does the Power of Quantum Computation Come From?
  • 13.10. What if Quantum Mechanics Is Not Quite Correct?
  • APPENDIXES
  • A. Some Relations Between Quantum Mechanics and Probability Theory
  • A.1. Tensor Products in Probability Theory
  • A.2. Quantum Mechanics as a Generalization of Probability Theory
  • A.3. References
  • A.4. Exercises
  • B. Solving the Abelian Hidden Subgroup Problem.
  • B.1. Representations of Finite Abelian Groups
  • B.1.1. Schur's Lemma
  • B.2. Quantum Fourier Transforms for Finite Abelian Groups
  • B.2.1. The Fourier Basis of an Abelian Group
  • B.2.2. The Quantum Fourier Transform Over a Finite Abelian Group
  • B.3. General Solution to the Finite Abelian Hidden Subgroup Problem
  • B.4. Instances of the Abelian Hidden Subgroup Problem
  • B.4.1. Simon's Problem
  • B.4.2. Shor's Algorithm: Finding the Period of a Function
  • B.5. Comments on the Non-Abelian Hidden Subgroup Problem
  • B.6. References
  • B.7. Exercises.