Decision making : a psychophysics application of network science, Center for Nonlinear Science, University of North Texas, USA, 10-13 January 2010 / editors, Paolo Grigolini, Bruce J. West.

This invaluable book captures the proceedings of a workshop that brought together a group of distinguished scientists from a variety of disciplines to discuss how networking influences decision making. The individual lectures interconnect psychological testing, the modeling of neuron networks and br...

Full description

Saved in:
Bibliographic Details
Other Authors: Grigolini, Paolo, West, Bruce J.
Format: eBook
Language:English
Published: New Jersey : World Scientific, ©2011.
Series:Studies of nonlinear phenomena in life sciences ; v. 15.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Preface; CONTENTS; 1. Overview of ARO program on network science for human decision making B.J. West; 1. Introduction; 2. Background; 2.1. What we know about networks; 2.2. What we do not know about the linking of physical and human networks; 3. What We Have Been Doing; 3.1. Complexity theory and modeling without scales; 3.2. Information propagation in complex adaptive networks; 4. Preliminary Conclusions; References; 2. Viewing the extended mind hypothesis (Clark & Chambers) in terms of complex systems dynamics G. Werner; 1. Background; 2. On the Extended Mind Hypothesis.
  • 3. Brain and World as ONE Complex Dynamical System4. Praxis Ahead of Theory; 5. Conclusion; References; 3. Uncertainty in psychophysics: Deriving a network of psychophysical equations K.H. Norwich; 1. Introduction; 2. Philosophical Underpinnings; 3. Mathematical Representation of the Psychophysical Law (Weber-Fechner and Stevens); 4. A Network of Equations Issuing from the Entropic Form of the Psychophysical Law; 4.1. The differential threshold (DH from Fechner's conjecture) and Weber's fraction; 4.2. The hyperbolic law governing the magnitude of n (DH from Miller's magical number).
  • 4.3. Simple reaction time (DH is the minimum quantity of information needed to react)5. Searching for Support within Thermodynamics and Statistical Physics; 5.1. Emergence of the Weber-Fechner law from thermodynamics; 6. Discussion; 6.1. Review; 6.2. Quantum Sufficiat; Acknowledgements; References; 4. The collective brain E. Tagliazucchi and D.R. Chialvo; 1. Introduction; 2. Emergent Complex Dynamics is always Critical; 3. The Collective Large-scale Brain Dynamics; 4. Neuronal Avalanching in Small Scale is Critical; 5. Psychophysics and Behavior; 6. An Evolutionary Perspective.
  • 7. Noise or Critical Fluctuations? Equilibrium vs Non-equilibrium8. Outlook; Acknowledgements; References; 5. Acquiring long-range memory through adaptive avalanches S. Boettcher; 1. Introduction; 2. Motivation from Self-organized Criticality; 3. Spin Glass Ground States with Extremal Optimization; 4. EO Dynamics; 5. Annealed Optimization Model; 6. Evolution Equations for Local Search Heuristics; 6.1. Extremal optimization algorithm; 6.2. Update probabilities for extremal optimization; 6.3. Update probabilities for metropolis algorithms; 6.4. Evolution equations for a simple barrier model.
  • 6.5. Jamming model for -EOReferences; 6. Random walk of complex networks: From infinitely slow to instantaneous transition to equilibrium N.W. Hollingshad, P. Grigolini and P. Allegrini; 1. Introduction; 2. Preliminary Remarks on the Size of a Complex Network; 3. On the Master Matrix A; 4. Transition to Equilibrium in Hierarchical Networks; 5. Return to the Origin in a Scale-free Network; 5.1. Ad hoc scale-free network; 5.2. Hierarchical network; 6. Conclusions; Acknowledgements; References; 7. Coherence and complexity M. Bologna, E. Geneston, P. Grigolini, M. Turalska and M. Lukovic.