|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
ocn796384299 |
003 |
OCoLC |
005 |
20241006213017.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
120625s2012 gw ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCO
|d DEBSZ
|d MBB
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCF
|d YDXCP
|d E7B
|d CDX
|d N$T
|d IDEBK
|d HEBIS
|d S3O
|d OCLCQ
|d AGLDB
|d MOR
|d PIFAG
|d VGM
|d ZCU
|d OCLCQ
|d MERUC
|d OCLCQ
|d DEGRU
|d U3W
|d COCUF
|d STF
|d OCLCQ
|d VTS
|d ICG
|d INT
|d VT2
|d OCLCQ
|d WYU
|d OCLCO
|d TKN
|d OCLCQ
|d LEAUB
|d DKC
|d OCLCQ
|d AU@
|d M8D
|d UKAHL
|d OCLCQ
|d K6U
|d UKCRE
|d U9X
|d AUD
|d OCLCQ
|d QGK
|d OCLCO
|d OCLCQ
|d OCLCO
|d SFB
|d OCLCL
|
016 |
7 |
|
|a 016102265
|2 Uk
|
019 |
|
|
|a 804049067
|a 961580747
|a 962717661
|a 988500875
|a 992003766
|a 1037705760
|a 1038599521
|a 1055332966
|a 1059006151
|a 1065702693
|a 1081241829
|a 1086900516
|a 1097120333
|a 1152980028
|a 1153518515
|a 1228561537
|a 1259099121
|a 1264899662
|
020 |
|
|
|a 9783110277340
|
020 |
|
|
|a 3110277344
|
020 |
|
|
|a 9783110277333
|
020 |
|
|
|a 3110277336
|
020 |
|
|
|a 1283857944
|
020 |
|
|
|a 9781283857949
|
020 |
|
|
|z 9783110277227
|q (hardcover ;
|q alk. paper)
|
020 |
|
|
|z 3110277220
|q (hardcover ;
|q alk. paper)
|
024 |
7 |
|
|a 10.1515/9783110277333
|2 doi
|
035 |
|
|
|a (OCoLC)796384299
|z (OCoLC)804049067
|z (OCoLC)961580747
|z (OCoLC)962717661
|z (OCoLC)988500875
|z (OCoLC)992003766
|z (OCoLC)1037705760
|z (OCoLC)1038599521
|z (OCoLC)1055332966
|z (OCoLC)1059006151
|z (OCoLC)1065702693
|z (OCoLC)1081241829
|z (OCoLC)1086900516
|z (OCoLC)1097120333
|z (OCoLC)1152980028
|z (OCoLC)1153518515
|z (OCoLC)1228561537
|z (OCoLC)1259099121
|z (OCoLC)1264899662
|
050 |
|
4 |
|a QA612 .V38 2012
|
072 |
|
7 |
|a QA
|2 lcco
|
072 |
|
7 |
|a MAT
|x 037000
|2 bisacsh
|
049 |
|
|
|a HCDD
|
100 |
1 |
|
|a Väth, Martin.
|
245 |
1 |
0 |
|a Topological Analysis :
|b From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions.
|
260 |
|
|
|a Berlin :
|b De Gruyter,
|c 2012.
|
300 |
|
|
|a 1 online resource (500 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a De Gruyter Series in Nonlinear Analysis and Applications ;
|v v. 16
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Preface; 1 Introduction; I Topology and Multivalued Maps; 2 Multivalued Maps; 2.1 Notations for Multivalued Maps and Axioms; 2.1.1 Notations; 2.1.2 Axioms; 2.2 Topological Notations and Basic Results; 2.3 Separation Axioms; 2.4 Upper Semicontinuous Multivalued Maps; 2.5 Closed and Proper Maps; 2.6 Coincidence Point Sets and Closed Graphs; 3 Metric Spaces; 3.1 Notations and Basic Results for Metric Spaces; 3.2 Three Measures of Noncompactness; 3.3 Condensing Maps; 3.4 Convexity; 3.5 Two Embedding Theorems for Metric Spaces; 3.6 Some Old and New Extension Theorems for Metric Spaces.
|
505 |
8 |
|
|a 4 Spaces Defined by Extensions, Retractions, or Homotopies4.1 AE and ANE Spaces; 4.2 ANR and AR Spaces; 4.3 Extension of Compact Maps and of Homotopies; 4.4 UV8 and Rd Spaces and Homotopic Characterizations; 5 Advanced Topological Tools; 5.1 Some Covering Space Theory; 5.2 A Glimpse on Dimension Theory; 5.3 Vietoris Maps; II Coincidence Degree for Fredholm Maps; 6 Some Functional Analysis; 6.1 Bounded Linear Operators and Projections; 6.2 Linear Fredholm Operators; 7 Orientation of Families of Linear Fredholm Operators; 7.1 Orientation of a Linear Fredholm Operator.
|
505 |
8 |
|
|a 7.2 Orientation of a Continuous Family7.3 Orientation of a Family in Banach Bundles; 8 Some Nonlinear Analysis; 8.1 The Pointwise Inverse and Implicit Function Theorems; 8.2 Oriented Nonlinear Fredholm Maps; 8.3 Oriented Fredholm Maps in Banach Manifolds; 8.4 A Partial Implicit Function Theorem in Banach Manifolds; 8.5 Transversal Submanifolds; 8.6 Parameter-Dependent Transversality and Partial Submanifolds; 8.7 Orientation on Submanifolds and on Partial Submanifolds; 8.8 Existence of Transversal Submanifolds; 8.9 Properness of Fredholm Maps; 9 The Brouwer Degree.
|
505 |
8 |
|
|a 9.1 Finite-Dimensional Manifolds9.2 Orientation of Continuous Maps and of Manifolds; 9.3 The Cr Brouwer Degree; 9.4 Uniqueness of the Brouwer Degree; 9.5 Existence of the Brouwer Degree; 9.6 Some Classical Applications of the Brouwer Degree; 10 The Benevieri-Furi Degrees; 10.1 Further Properties of the Brouwer Degree; 10.2 The Benevieri-Furi C1 Degree; 10.3 The Benevieri-Furi Coincidence Degree; III Degree Theory for Function Triples; 11 Function Triples; 11.1 Function Triples and Their Equivalences; 11.2 The Simplifier Property; 11.3 Homotopies of Triples; 11.4 Locally Normal Triples.
|
505 |
8 |
|
|a 12 The Degree for Finite-Dimensional Fredholm Triples12.1 The Triple Variant of the Brouwer Degree; 12.2 The Triple Variant of the Benevieri-Furi Degree; 13 The Degree for Compact Fredholm Triples; 13.1 The Leray-Schauder Triple Degree; 13.2 The Leray-Schauder Coincidence Degree; 13.3 Classical Applications of the Leray-Schauder Degree; 14 The Degree for Noncompact Fredholm Triples; 14.1 The Degree for Fredholm Triples with Fundamental Sets; 14.2 Homotopic Tests for Fundamental Sets; 14.3 The Degree for Fredholm Triples with Convex-fundamental Sets; 14.4 Countably Condensing Triples.
|
520 |
|
|
|a This monograph is an introduction to some special aspects of topology, functional analysis, and analysis for the advanced reader. It also wants to develop a degree theory for function triples which unifies and extends most known degree theories. The book aims to be self-contained and many chapters could even serve as a basis of a course on the covered topics. Only knowledge in basic calculus and of linear algebra is assumed.
|
504 |
|
|
|a Includes bibliographical references and indexes.
|
546 |
|
|
|a English.
|
650 |
|
0 |
|a Topological degree.
|
650 |
|
0 |
|a Topological spaces.
|
650 |
|
0 |
|a Fredholm operators.
|
650 |
|
0 |
|a Algebraic topology.
|
650 |
|
7 |
|a MATHEMATICS
|x Functional Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Algebraic topology
|2 fast
|
650 |
|
7 |
|a Fredholm operators
|2 fast
|
650 |
|
7 |
|a Topological degree
|2 fast
|
650 |
|
7 |
|a Topological spaces
|2 fast
|
650 |
|
7 |
|a Analysis
|2 gnd
|
650 |
|
7 |
|a Topologische Methode
|2 gnd
|
758 |
|
|
|i has work:
|a Topological analysis (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFyRtqfKDqXYqXxvjyrxrC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Väth, Martin.
|t Topological Analysis : From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions.
|d Berlin : De Gruyter, ©2012
|z 9783110277227
|
830 |
|
0 |
|a De Gruyter series in nonlinear analysis and applications.
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=893992
|y Click for online access
|
903 |
|
|
|a EBC-AC
|
994 |
|
|
|a 92
|b HCD
|