Lectures in real geometry / editor Fabrizio Broglia.

Saved in:
Bibliographic Details
Other Authors: Broglia, Fabrizio, 1948-
Format: eBook
Language:English
Published: Berlin ; New York : Walter de Gruyter, 1996.
Series:De Gruyter expositions in mathematics ; 23.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000Ma 4500
001 ocn811372298
003 OCoLC
005 20241006213017.0
006 m o d
007 cr cn|||||||||
008 960709s1996 gw ob 000 0 eng d
010 |z  96031731  
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCO  |d N$T  |d OCLCF  |d IDEBK  |d OCLCQ  |d DEBBG  |d OCLCQ  |d EBLCP  |d YDXCP  |d COO  |d OCLCQ  |d DEBSZ  |d AZK  |d UIU  |d COCUF  |d MOR  |d PIFAG  |d OCLCQ  |d MERUC  |d OCLCQ  |d ZCU  |d U3W  |d STF  |d WRM  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d HS0  |d OCLCQ  |d VLY  |d OCLCO  |d INARC  |d AAA  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 922943390  |a 961620424  |a 962692446  |a 1058401745  |a 1097139263  |a 1162111928  |a 1227643502 
020 |a 9783110811117  |q (electronic bk.) 
020 |a 3110811111  |q (electronic bk.) 
020 |z 3110150956  |q (acid-free paper) 
020 |z 9783110150957 
024 7 |a 10.1515/9783110811117  |2 doi 
035 |a (OCoLC)811372298  |z (OCoLC)922943390  |z (OCoLC)961620424  |z (OCoLC)962692446  |z (OCoLC)1058401745  |z (OCoLC)1097139263  |z (OCoLC)1162111928  |z (OCoLC)1227643502 
050 4 |a QA551  |b .L29 1996eb 
072 7 |a MAT  |x 012010  |2 bisacsh 
049 |a HCDD 
245 0 0 |a Lectures in real geometry /  |c editor Fabrizio Broglia. 
260 |a Berlin ;  |a New York :  |b Walter de Gruyter,  |c 1996. 
300 |a 1 online resource (xiv, 268 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a De Gruyter expositions in mathematics,  |x 0938-6572 ;  |v 23 
500 |a "Elaborated versions of the lectures given ... at the Winter School in Real Geometry, held in Universidad Complutense de Madrid, January 3-7, 1994"--Foreword. 
504 |a Includes bibliographical references. 
505 0 |a Foreword -- Introduction -- Basic algorithms in real algebraic geometry and their complexity: from Sturmâ€?s theorem to the existential theory of reals -- 1. Introduction -- 2. Real closed fields -- 2.1. Definition and first examples of real closed fields -- 2.2. Cauchy index and real root counting -- 3. Real root counting -- 3.1. Sylvester sequence -- 3.2. Subresultants and remainders -- 3.3. Sylvester-Habicht sequence -- 3.4. Quadratic forms, Hankel matrices and real roots -- 3.5. Summary and discussion -- 4. Complexity of algorithms -- 5. Sign determinations 
505 8 |a 5.1. Simultaneous inequalities5.2. Thomâ€?s lemma and its consequences -- 6. Existential theory of reals -- 6.1. Solving multivariate polynomial systems -- 6.2. Some real algebraic geometry -- 6.3. Finding points on hypersurfaces -- 6.4. Finding non empty sign conditions -- References -- Nash functions and manifolds -- Â1. Introduction -- Â2. Nash functions -- Â3. Approximation Theorem -- Â4. Nash manifolds -- Â5. Sheaf theory of Nash function germs -- Â6. Nash groups -- References -- Approximation theorems in real analytic and algebraic geometry 
505 8 |a IntroductionI. The analytic case -- 1. The Whitney topology for sections of a sheaf -- 2. A Whitney approximation theorem -- 3. Approximation for sections of a sheaf -- 4. Approximation for sheaf homomorphisms -- II. The algebraic case -- 5. Preliminaries on real algebraic varieties -- 6. A- and B-coherent sheaves -- 7. The approximation theorems in the algebraic case -- III. Algebraic and analytic bundles -- 8. Duality theory -- 9. Strongly algebraic vector bundles -- 10. Approximation for sections of vector bundles -- References 
505 8 |a Real abelian varieties and real algebraic curvesIntroduction -- 1. Generalities on complex tori -- 1.1. Complex tori -- 1.2. Homology and cohomology of tori -- 1.3. Morphisms of complex tori -- 1.4. The Albanese and the Picard variety -- 1.5. Line bundles on complex tori -- 1.6. Polarizations -- 1.7. Riemannâ€?s bilinear relations and moduli spaces -- 2. Real structures -- 2.1. Definition of real structures -- 2.2. Real models -- 2.3. The action of conjugation on functions and forms -- 2.4. The action of conjugation on cohomology 
505 8 |a 2.5. A theorem of Comessatti2.6. Group cohomology -- 2.7. The action of conjugation on the Albanese variety and the Picard group -- 2.8. Period matrices in pseudonormal form and the Albanese map -- 3. Real abelian varieties -- 3.1. Real structures on complex tori -- 3.2. Equivalence classes for real structures on complex tori -- 3.3. Line bundles on complex tori with a real structure -- 3.4. Riemann bilinear relations for principally polarized real varieties -- 3.5. Moduli spaces of principally polarized real abelian varieties -- 3.6. Real theta functions 
546 |a English. 
650 0 |a Geometry, Analytic. 
650 0 |a Geometry, Algebraic. 
650 7 |a MATHEMATICS  |x Geometry  |x Algebraic.  |2 bisacsh 
650 7 |a Geometry, Algebraic  |2 fast 
650 7 |a Geometry, Analytic  |2 fast 
700 1 |a Broglia, Fabrizio,  |d 1948-  |1 https://id.oclc.org/worldcat/entity/E39PCjF8gWQ3j94PPHd8cJ4Brm 
776 0 8 |i Print version:  |t Lectures in real geometry.  |d Berlin ; New York : Walter de Gruyter, 1996  |w (DLC) 96031731 
830 0 |a De Gruyter expositions in mathematics ;  |v 23.  |x 0938-6572 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=3040487  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD