|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
ocn811372298 |
003 |
OCoLC |
005 |
20241006213017.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
960709s1996 gw ob 000 0 eng d |
010 |
|
|
|z 96031731
|
040 |
|
|
|a E7B
|b eng
|e pn
|c E7B
|d OCLCO
|d N$T
|d OCLCF
|d IDEBK
|d OCLCQ
|d DEBBG
|d OCLCQ
|d EBLCP
|d YDXCP
|d COO
|d OCLCQ
|d DEBSZ
|d AZK
|d UIU
|d COCUF
|d MOR
|d PIFAG
|d OCLCQ
|d MERUC
|d OCLCQ
|d ZCU
|d U3W
|d STF
|d WRM
|d NRAMU
|d ICG
|d INT
|d VT2
|d OCLCQ
|d WYU
|d TKN
|d AU@
|d OCLCQ
|d DKC
|d OCLCQ
|d HS0
|d OCLCQ
|d VLY
|d OCLCO
|d INARC
|d AAA
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 922943390
|a 961620424
|a 962692446
|a 1058401745
|a 1097139263
|a 1162111928
|a 1227643502
|
020 |
|
|
|a 9783110811117
|q (electronic bk.)
|
020 |
|
|
|a 3110811111
|q (electronic bk.)
|
020 |
|
|
|z 3110150956
|q (acid-free paper)
|
020 |
|
|
|z 9783110150957
|
024 |
7 |
|
|a 10.1515/9783110811117
|2 doi
|
035 |
|
|
|a (OCoLC)811372298
|z (OCoLC)922943390
|z (OCoLC)961620424
|z (OCoLC)962692446
|z (OCoLC)1058401745
|z (OCoLC)1097139263
|z (OCoLC)1162111928
|z (OCoLC)1227643502
|
050 |
|
4 |
|a QA551
|b .L29 1996eb
|
072 |
|
7 |
|a MAT
|x 012010
|2 bisacsh
|
049 |
|
|
|a HCDD
|
245 |
0 |
0 |
|a Lectures in real geometry /
|c editor Fabrizio Broglia.
|
260 |
|
|
|a Berlin ;
|a New York :
|b Walter de Gruyter,
|c 1996.
|
300 |
|
|
|a 1 online resource (xiv, 268 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|2 rda
|
490 |
1 |
|
|a De Gruyter expositions in mathematics,
|x 0938-6572 ;
|v 23
|
500 |
|
|
|a "Elaborated versions of the lectures given ... at the Winter School in Real Geometry, held in Universidad Complutense de Madrid, January 3-7, 1994"--Foreword.
|
504 |
|
|
|a Includes bibliographical references.
|
505 |
0 |
|
|a Foreword -- Introduction -- Basic algorithms in real algebraic geometry and their complexity: from Sturm�s theorem to the existential theory of reals -- 1. Introduction -- 2. Real closed fields -- 2.1. Definition and first examples of real closed fields -- 2.2. Cauchy index and real root counting -- 3. Real root counting -- 3.1. Sylvester sequence -- 3.2. Subresultants and remainders -- 3.3. Sylvester-Habicht sequence -- 3.4. Quadratic forms, Hankel matrices and real roots -- 3.5. Summary and discussion -- 4. Complexity of algorithms -- 5. Sign determinations
|
505 |
8 |
|
|a 5.1. Simultaneous inequalities5.2. Thomâ€?s lemma and its consequences -- 6. Existential theory of reals -- 6.1. Solving multivariate polynomial systems -- 6.2. Some real algebraic geometry -- 6.3. Finding points on hypersurfaces -- 6.4. Finding non empty sign conditions -- References -- Nash functions and manifolds -- Â1. Introduction -- Â2. Nash functions -- Â3. Approximation Theorem -- Â4. Nash manifolds -- Â5. Sheaf theory of Nash function germs -- Â6. Nash groups -- References -- Approximation theorems in real analytic and algebraic geometry
|
505 |
8 |
|
|a IntroductionI. The analytic case -- 1. The Whitney topology for sections of a sheaf -- 2. A Whitney approximation theorem -- 3. Approximation for sections of a sheaf -- 4. Approximation for sheaf homomorphisms -- II. The algebraic case -- 5. Preliminaries on real algebraic varieties -- 6. A- and B-coherent sheaves -- 7. The approximation theorems in the algebraic case -- III. Algebraic and analytic bundles -- 8. Duality theory -- 9. Strongly algebraic vector bundles -- 10. Approximation for sections of vector bundles -- References
|
505 |
8 |
|
|a Real abelian varieties and real algebraic curvesIntroduction -- 1. Generalities on complex tori -- 1.1. Complex tori -- 1.2. Homology and cohomology of tori -- 1.3. Morphisms of complex tori -- 1.4. The Albanese and the Picard variety -- 1.5. Line bundles on complex tori -- 1.6. Polarizations -- 1.7. Riemann�s bilinear relations and moduli spaces -- 2. Real structures -- 2.1. Definition of real structures -- 2.2. Real models -- 2.3. The action of conjugation on functions and forms -- 2.4. The action of conjugation on cohomology
|
505 |
8 |
|
|a 2.5. A theorem of Comessatti2.6. Group cohomology -- 2.7. The action of conjugation on the Albanese variety and the Picard group -- 2.8. Period matrices in pseudonormal form and the Albanese map -- 3. Real abelian varieties -- 3.1. Real structures on complex tori -- 3.2. Equivalence classes for real structures on complex tori -- 3.3. Line bundles on complex tori with a real structure -- 3.4. Riemann bilinear relations for principally polarized real varieties -- 3.5. Moduli spaces of principally polarized real abelian varieties -- 3.6. Real theta functions
|
546 |
|
|
|a English.
|
650 |
|
0 |
|a Geometry, Analytic.
|
650 |
|
0 |
|a Geometry, Algebraic.
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x Algebraic.
|2 bisacsh
|
650 |
|
7 |
|a Geometry, Algebraic
|2 fast
|
650 |
|
7 |
|a Geometry, Analytic
|2 fast
|
700 |
1 |
|
|a Broglia, Fabrizio,
|d 1948-
|1 https://id.oclc.org/worldcat/entity/E39PCjF8gWQ3j94PPHd8cJ4Brm
|
776 |
0 |
8 |
|i Print version:
|t Lectures in real geometry.
|d Berlin ; New York : Walter de Gruyter, 1996
|w (DLC) 96031731
|
830 |
|
0 |
|a De Gruyter expositions in mathematics ;
|v 23.
|x 0938-6572
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=3040487
|y Click for online access
|
903 |
|
|
|a EBC-AC
|
994 |
|
|
|a 92
|b HCD
|