Regularization methods in Banach spaces / by Thomas Schuster [and others].

Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Usually the mathematical model of an inverse problem consists of an operator equation of the first kind and often the associated forward operator acts between Hilbert s...

Full description

Saved in:
Bibliographic Details
Other Authors: Schuster, Thomas, 1971-
Format: eBook
Language:English
Published: Berlin ; Boston : De Gruyter, ©2012.
Series:Radon series on computational and applied mathematics ; 10.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000Ma 4500
001 ocn812251485
003 OCoLC
005 20241006213017.0
006 m o d
007 cr |n|||||||||
008 120405s2012 gw a ob 001 0 eng d
010 |z  2012013065 
040 |a CDX  |b eng  |e pn  |c CDX  |d OCLCO  |d YDXCP  |d AZU  |d COO  |d N$T  |d E7B  |d OCLCQ  |d AUW  |d OCLCQ  |d OCLCF  |d DEBSZ  |d OCLCQ  |d IDEBK  |d MHW  |d DEBBG  |d OCLCQ  |d AZK  |d AGLDB  |d MOR  |d PIFAG  |d OTZ  |d OCLCQ  |d MERUC  |d OCLCQ  |d ZCU  |d DEGRU  |d U3W  |d STF  |d WRM  |d OCLCQ  |d VTS  |d ICG  |d INT  |d NRAMU  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d VLY  |d BRF  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
066 |c (S 
019 |a 811964416  |a 812574193  |a 817816743  |a 961556941  |a 962690118  |a 988499060  |a 992097909  |a 995011086  |a 1037761943  |a 1038572869  |a 1045526048  |a 1058121946  |a 1058125936  |a 1062926507  |a 1081248125  |a 1148142997  |a 1162007062  |a 1228603370 
020 |a 9783110255720  |q (electronic bk.) 
020 |a 3110255723  |q (electronic bk.) 
020 |a 9783112204504  |q (set (print + e-book)) 
020 |a 3112204506  |q (set (print + e-book)) 
020 |a 1283627922 
020 |a 9781283627924 
020 |z 3110255243 
020 |z 9783110255249 
020 |a 9786613940377 
020 |a 6613940372 
024 8 |a 9786613940377 
035 |a (OCoLC)812251485  |z (OCoLC)811964416  |z (OCoLC)812574193  |z (OCoLC)817816743  |z (OCoLC)961556941  |z (OCoLC)962690118  |z (OCoLC)988499060  |z (OCoLC)992097909  |z (OCoLC)995011086  |z (OCoLC)1037761943  |z (OCoLC)1038572869  |z (OCoLC)1045526048  |z (OCoLC)1058121946  |z (OCoLC)1058125936  |z (OCoLC)1062926507  |z (OCoLC)1081248125  |z (OCoLC)1148142997  |z (OCoLC)1162007062  |z (OCoLC)1228603370 
037 |a 394037  |b MIL 
050 4 |a QA322.2  |b .R44 2012eb 
072 7 |a MAT  |x 031000  |2 bisacsh 
072 7 |a QA  |2 lcco 
049 |a HCDD 
245 0 0 |a Regularization methods in Banach spaces /  |c by Thomas Schuster [and others]. 
260 |a Berlin ;  |a Boston :  |b De Gruyter,  |c ©2012. 
300 |a 1 online resource (xi, 283 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Radon series on computational and applied mathematics,  |x 1865-3707 ;  |v 10 
504 |a Includes bibliographical references (pages 265-279) and index. 
505 0 |a Why to use Banach spaces in regularization theory? -- Geometry and mathematical tools of Banach spaces -- Tikhonov-type regularization -- Iterative regularization -- The method of approximate inverse. 
588 0 |a Print version record. 
520 |a Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Usually the mathematical model of an inverse problem consists of an operator equation of the first kind and often the associated forward operator acts between Hilbert spaces. However, for numerous problems the reasons for using a Hilbert space setting seem to be based rather on conventions than on an approprimate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, sparsity constraints using general Lp-norms or the BV-norm have recently become very popular. Meanwhile the most well-known methods have been investigated for linear and nonlinear operator equations in Banach spaces. Motivated by these facts the authors aim at collecting and publishing these results in a monograph. 
546 |a English. 
650 0 |a Banach spaces. 
650 0 |a Parameter estimation. 
650 0 |a Differential equations, Partial. 
650 7 |a MATHEMATICS  |x Transformations.  |2 bisacsh 
650 7 |a Banach spaces  |2 fast 
650 7 |a Differential equations, Partial  |2 fast 
650 7 |a Parameter estimation  |2 fast 
650 7 |a Banach-Raum  |2 gnd 
650 7 |a Regularisierung  |2 gnd 
700 1 |a Schuster, Thomas,  |d 1971- 
776 0 8 |i Print version:  |z 9786613940377  |w (DLC) 2012013065 
830 0 |a Radon series on computational and applied mathematics ;  |v 10. 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=893636  |y Click for online access 
880 0 |6 505-00/(S  |a Contents note continued: 7.2.2. Convergence rates for the iteratively regularized Landweber iteration with a priori stopping rule -- 7.3. The iteratively regularized Gauss-Newton method -- 7.3.1. Convergence with a priori parameter choice -- 7.3.2. Convergence with a posteriori parameter choice -- 7.3.3. Numerical illustration -- V. The method of approximate inverse -- 8. Setting of the method -- 9. Convergence analysis in Lp(Ω) and C(K) -- 9.1. The case X = Lp(Ω) -- 9.2. The case X = C(K) -- 9.3. An application to X-ray diffractometry -- 10.A glimpse of semi-discrete operator equations. 
903 |a EBC-AC 
994 |a 92  |b HCD