Modern Tools for the Synthesis of Complex Bioactive Molecules.

All the latest tools needed to plan and perform the synthesis of complex bioactive molecules Focusing on organic, organometallic, and bio-oriented processes, this book explores the impact and use of the latest synthetic tools for the synthesis of complex biologically active compounds. Readers will d...

Full description

Saved in:
Bibliographic Details
Main Author: Cossy, Janine
Other Authors: Arseniyadis, S. (Stellios)
Format: eBook
Language:English
Published: Chicester : Wiley, 2012.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000Mu 4500
001 ocn815982189
003 OCoLC
005 20240623213015.0
006 m o d
007 cr |n|---|||||
008 121005s2012 xx ob 001 0 eng d
040 |a MERUC  |b eng  |e pn  |c MERUC  |d OCLCO  |d IDEBK  |d EBLCP  |d OCLCQ  |d MHW  |d YDXCP  |d DEBSZ  |d OCLCQ  |d MERUC  |d ZCU  |d U3W  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO  |d ICG  |d INT  |d OCLCQ  |d TKN  |d OCLCQ  |d DKC  |d VT2  |d AU@  |d OCLCQ  |d UKAHL  |d OCLCQ  |d HS0  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
019 |a 811501316  |a 1091246267 
020 |a 9781118342855 
020 |a 1118342852 
020 |a 9780470616185  |q (hardback) 
020 |a 0470616180 
035 |a (OCoLC)815982189  |z (OCoLC)811501316  |z (OCoLC)1091246267 
050 4 |a QD415 .M63 2012 
049 |a HCDD 
100 1 |a Cossy, Janine. 
245 1 0 |a Modern Tools for the Synthesis of Complex Bioactive Molecules. 
260 |a Chicester :  |b Wiley,  |c 2012. 
300 |a 1 online resource (600 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a MODERN TOOLS FOR THE SYNTHESIS OF COMPLEX BIOACTIVE MOLECULES; CONTENTS; FOREWORD; PREFACE; CONTRIBUTORS; CHAPTER 1: C-H FUNCTIONALIZATION: A NEW STRATEGY FOR THE SYNTHESIS OF BIOLOGICALLY ACTIVE NATURAL PRODUCTS; 1.1. INTRODUCTION; 1.2. PALLADIUM(0)-CATALYZED INTRAMOLECULAR DIRECT ARYLATION; 1.3. PALLADIUM(0)-CATALYZED INTRAMOLECULAR ALKENYLATION OF sp2 C-H BONDS; 1.4. PALLADIUM(0)-CATALYZED INTRAMOLECULAR ARYLATION OF sp3 C-H BONDS; 1.5. PALLADIUM(II)-MEDIATED INTRAMOLECULAR OXIDATIVE ALKENYLATION OF sp2 C-H BONDS. 
505 8 |a 1.6. DIRECTING GROUP-ASSISTED PALLADIUM(II)- ENABLED CARBON-CARBON BOND FORMATION AT sp3 C-H BONDS1.7. PLATINUM(II)-MEDIATED ALKANE DEHYDROGENATION; 1.8. PALLADIUM(II)-ENABLED CARBON-OXYGEN BOND FORMATION AT sp3 C-H BONDS; 1.9. IRIDIUM-CATALYZED BORYLATION OF sp2 C-H BONDS; 1.10. RHODIUM(I)-CATALYZED INTRAMOLECULAR DIRECTED ALKYLATION OF sp2 C-H BONDS; 1.11. RHODIUM(III)-CATALYZED SYNTHESIS OF NITROGEN-CONTAINING HETEROCYCLES; 1.12. CONCLUSION; REFERENCES; CHAPTER 2: THE NEGISHI CROSS-COUPLING IN THE SYNTHESIS OF NATURAL PRODUCTS AND BIOACTIVE MOLECULES; 2.1. INTRODUCTION. 
505 8 |a 2.2. SYNTHESIS OF NATURAL PRODUCTS2.2.1. Synthesis of Polyenes; 2.2.2. Synthesis of Amino Acids and Macrocyclic Peptides; 2.2.3. Synthesis of Macrocycles; 2.2.4. Synthesis of Small Heterocycles; 2.3. LARGE-SCALE SYNTHESIS OF BIOLOGICALLY ACTIVE MOLECULES; 2.3.1. Nonsteroidal Ligand A-224817.0 1A; 2.3.2. Phosphodiesterase Inhibitor PDE472; 2.3.3. Reverse Transcriptase Inhibitor MIV-150; 2.3.4. B-Raf Kinase Inhibitors; 2.3.5. mGluR1 Antagonist; 2.4. CONCLUSION; REFERENCES; CHAPTER 3: METAL-CATALYZED C-HETEROATOM CROSS-COUPLING REACTIONS; 3.1. GENERAL INTRODUCTION. 
505 8 |a 3.2. BUCHWALD-HARTWIG-TYPE REACTIONS3.2.1. Introduction; 3.2.2. Mechanism; 3.2.3. Scope and Limitations; 3.2.4. Applications in the Synthesis of Complex Bioactive Molecules; 3.2.5. C-N Bond Formation; 3.2.6. C-S and C-O Bond Formation; 3.3. ULLMANN-TYPE REACTIONS; 3.3.1. Introduction; 3.3.2. Mechanism; 3.3.3. Scope and Limitations; 3.3.4. Applications in the Synthesis of Complex Bioactive Molecules; 3.3.5. C-N Bond Formation; 3.3.6. C-O Bond Formation; 3.4. MISCELLANEOUS; 3.4.1. Chan-Lam-Evans; 3.4.2. Iron/Copper-Mediated Methodologies; 3.4.3. Other Metals; 3.5. CONCLUSION; REFERENCES. 
505 8 |a CHAPTER 4: GOLDEN OPPORTUNITIES IN THE SYNTHESIS OF NATURAL PRODUCTS AND BIOLOGICALLY ACTIVE COMPOUNDS4.1. INTRODUCTION; 4.2. GOLD-CATALYZED FORMATION OF OXYGEN-CONTAINING HETEROCYCLES; 4.2.1. Cyclizations Leading to Furan and Pyran Derivatives; 4.2.2. Spiroketalizations; 4.2.3. Other Transformations; 4.3. GOLD-CATALYZED FORMATION OF NITROGEN-CONTAINING HETEROCYCLES; 4.3.1. Cyclizations Involving the Formation of a New C-N Bond; 4.3.2. Cyclizations Involving the Formation of a New C-C Bond; 4.4. GOLD-CATALYZED FORMATION OF CARBOCYCLES. 
500 |a 4.4.1. Cyclizations Involving the Formation of a Single New C-C Bond. 
520 |a All the latest tools needed to plan and perform the synthesis of complex bioactive molecules Focusing on organic, organometallic, and bio-oriented processes, this book explores the impact and use of the latest synthetic tools for the synthesis of complex biologically active compounds. Readers will discover step by step how these synthetic tools have provided new, elegant solutions to many synthetic puzzles. Moreover, they will discover innovative methods that make it possible to control the exact connectivity of atoms within a molecule in order to set precise three-dimensional arrangements. 
504 |a Includes bibliographical references and index. 
650 0 |a Biochemistry. 
650 0 |a Biomolecules  |x Synthesis. 
650 7 |a biochemistry.  |2 aat 
650 7 |a Biochemistry  |2 fast 
650 7 |a Biomolecules  |x Synthesis  |2 fast 
700 1 |a Arseniyadis, S.  |q (Stellios)  |1 https://id.oclc.org/worldcat/entity/E39PBJycVj4gMmGyw8yQjXJ4bd 
758 |i has work:  |a Modern tools for the synthesis of complex bioactive molecules (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGHQyTqXD6VMghxFjQ9pbm  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Cossy, Janine.  |t Modern Tools for the Synthesis of Complex Bioactive Molecules.  |d Chicester : Wiley, ©2012  |z 9780470616185 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=894392  |y Click for online access 
880 8 |6 505-00/(S  |a 12.2.2. β-Rhamnopyranosides -- 12.3. 1,2-trans-EQUATORIAL LINKAGES -- 12.3.1. The Globo-H Polysaccharide -- 12.3.2. Nitrile Effect -- 12.3.3. 1,2-Anhydro Sugars -- 12.3.4. Preactivation of Thioglycosides -- 12.3.5. Programmable Reactivity-Based One-Pot Strategy -- 12.3.6. Solid-Phase Synthesis of Globo-H -- 12.4. 1,2-cis-AXIAL GLYCOSIDES -- 12.4.1. Armed Galactosyl Donors -- 12.4.2. Conformational Constraint by a 4,6-O-Acetal -- 12.4.3. Boons' Participation Method -- 12.5. α-SIALIC ACID GLYCOSIDES -- 12.5.1. Synthesis of α-Sialyl Derivatives and Gangliosides -- 12.5.2. Synthesis of N-Glycolylneuraminic Acid and KDNContaining Oligosaccharides -- 12.6. URONIC ACID GLYCOSIDES -- 12.7. β-ARABINOFURANOSIDES -- 12.7.1. Cyclically Constrained Donors -- 12.7.2. β-Selective Donors with Acyclic Protecting Groups -- 12.7.3. Intramolecular Aglycon Delivery -- 12.7.4. Synthesis of Sucrose -- 12.8. CONCLUSION -- REFERENCES -- CHAPTER 13: AMMONIUM YLIDES AS BUILDING BLOCKS FOR ALKALOID SYNTHESIS -- 13.1. INTRODUCTION -- 13.2. AMMONIUM 1,3-YLIDES -- 13.2.1. Isomünchnones as Dipoles -- 13.2.2. Isothiomünchnones as Dipoles -- 13.2.3. Cross-Conjugated Heteroaromatic Betaines -- 13.2.4. Push-Pull Dipoles -- 13.2.5. Intermolecular Azomethine Ylide Cycloadditions -- 13.2.6. Intramolecular Azomethine Ylide Cycloadditions -- 13.2.7. Other Strategies -- 13.3. 1,2-AMMONIUM YLIDES -- 13.3.1. [1,2]-Rearrangements (the Stevens Rearrangement) -- 13.3.2. [2,3]-Rearrangements -- 13.4. CONCLUSION -- REFERENCES -- CHAPTER 14: PRECURSOR-DIRECTED BIOSYNTHESIS OF POLYKETIDE AND NONRIBOSOMAL PEPTIDE NATURAL PRODUCTS -- 14.1. INTRODUCTION -- 14.2. NATURAL PRODUCT BIOSYNTHESIS -- 14.2.1. Polyketide Biosynthesis -- 14.2.2. Nonribosomal Peptide Biosynthesis -- 14.3. PRECURSOR-DIRECTED BIOSYNTHESIS -- 14.3.1. Introduction -- 14.3.2. Precursor Complexity and Enzyme Tolerance. 
880 8 |6 505-00/(S  |a 6.2.3. Michael Reaction -- 6.2.4. Diels-Alder Reaction -- 6.2.5. Pictet-Spengler Reaction -- 6.2.6. SOMO Reaction -- 6.3. HETEROATOM INSTALLATION -- 6.3.1. Epoxidation of Alkene -- 6.3.2. α-Aminoxylation -- 6.3.3. α-Amination -- 6.4. CASCADE REACTION -- 6.5. CONCLUSION -- REFERENCES -- CHAPTER 7: ASYMMETRIC PHASE-TRANSFER CATALYSIS -- 7.1. INTRODUCTION -- 7.2. ALKYLATION -- 7.2.1. Asymmetric Synthesis of α-Alkyl α-Amino Acids -- 7.2.2. Asymmetric Synthesis of α, α-Dialkyl α-Amino Acids -- 7.2.3. Alkylation of Peptides -- 7.3. MICHAEL ADDITION -- 7.4. ALDOL AND MANNICH REACTIONS -- 7.5. EPOXIDATION AND AZIRIDINATION -- 7.6. STRECKER REACTION -- 7.7. CYCLIZATION -- 7.8. AMINATION -- 7.9. FLUORINATION -- 7.10. CONCLUSION -- REFERENCES -- CHAPTER 8: REARRANGEMENTS IN NATURAL PRODUCT SYNTHESIS -- 8.1. INTRODUCTION -- 8.2. THE COPE AND OXY-COPE REARRANGEMENTS -- 8.2.1. The Cope Rearrangement -- 8.2.2. The Oxy-Cope Rearrangement -- 8.3. THE CLAISEN REARRANGEMENT -- 8.4. THE OVERMAN REARRANGEMENT -- 8.5. THE PETASIS-FERRIER REARRANGEMENT -- 8.6. THE PRINS-PINACOL REARRANGEMENT -- 8.7. THE [1,2]- AND [2,3]-WITTIG REARRANGEMENTS -- 8.8. THEMEYER-SCHUSTERANDRUPEREARRANGEMENTS -- REFERENCES -- CHAPTER 9: DOMINO REACTIONS IN THE ENANTIOSELECTIVE SYNTHESIS OF BIOACTIVE NATURAL PRODUCTS -- 9.1. INTRODUCTION -- 9.2. CATIONIC DOMINO REACTIONS -- 9.3. ANIONIC DOMINO REACTIONS -- 9.3.1. Domino Reactions with Michael Additions as the Initiating Step -- 9.3.2. Domino Reactions with Aldol Reactions as the Initiating Step -- 9.3.3. Nucleophilic Substitutions, 1,2-Additions, or Other Reactions as the Initiating Step -- 9.4. RADICAL DOMINO REACTIONS -- 9.5. PERICYCLIC REACTIONS -- 9.6. PHOTOCHEMICALLY INDUCED DOMINO REACTIONS -- 9.7. TRANSITION METAL-CATALYZED DOMINO REACTIONS -- 9.7.1. Pd-Catalyzed Domino Reactions -- 9.7.2. Rhodium-Catalyzed Domino Reactions. 
880 8 |6 505-00/(S  |a 9.7.3. Ruthenium-Catalyzed Domino Reactions Applying Metatheses -- 9.8. OXIDATIVE OR REDUCTIVE DOMINO REACTIONS -- 9.8.1. Domino Reactions Initiated by Oxidation -- 9.8.2. Domino Reactions Initiated by Reduction -- REFERENCES -- CHAPTER 10: FLUOROUS LINKER-FACILITATED SYNTHESIS OF BIOLOGICALLY INTERESTING MOLECULES -- 10.1. INTRODUCTION -- 10.2. FLUOROUS PROTECTIVE LINKER FOR THE SYNTHESIS OF NATURAL PRODUCT ANALOGUES -- 10.3. FLUOROUS DISPLACEABLE LINKERS FOR THE SYNTHESIS OF HETEROCYCLIC COMPOUNDS -- 10.4. FLUOROUS DIVERSITY ORIENTED SYNTHESIS (DOS) -- 10.5. FLUOROUS MIXTURE SYNTHESIS -- 10.6. SUMMARY -- REFERENCES -- CHAPTER 11: THE EVOLUTION OF IMMOBILIZED REAGENTS AND THEIR APPLICATION IN FLOW CHEMISTRY FOR THE SYNTHESIS OF NATURAL PRODUCTS AND PHARMACEUTICAL COMPOUNDS -- 11.1. BACKGROUND -- 11.2. MULTISTEP SYNTHESIS OF NATURAL PRODUCTS AND BIOACTIVE MATERIALS USING IMMOBILIZED REAGENTS -- 11.3. FLOW CHEMICAL SYNTHESIS -- 11.4. FLOW SYNTHESIS OF CHEMICAL BUILDING BLOCKS -- 11.4.1. Butane-2, 3-Diacetal-Protected Diols -- 11.4.2. Yne-Ones and Pyrazoles as Primary Building Blocks -- 11.4.3. Curtius Rearrangement -- 11.4.4. Fluorination Reactions -- 11.4.5. Seyferth-Gilbert Homologation Using the Bestmann- Ohira Reagent for the Formation of Acetylenes and Triazoles -- 11.4.6. 3-Nitropyrrolidine Building Blocks -- 11.4.7. 4,5-Disubstituted Oxazoles as Building Blocks -- 11.5. MULTISTEP FLOW SYNTHESIS OF NATURAL PRODUCTS AND PHARMACEUTICAL COMPOUNDS -- 11.5.1. Casein Kinase I Inhibitors -- 11.5.2. A Quinolone 5HT1B Antagonist -- 11.5.3. Imatinib Mesylate -- 11.6. CONCLUSION -- REFERENCES -- CHAPTER 12: SYNTHETIC APPROACHES TO BIOACTIVE CARBOHYDRATES -- 12.1. INTRODUCTION -- 12.1.1. Heparin Pentasaccharide Synthesis -- 12.1.2. Moenomycin Pentasaccharide Synthesis -- 12.2. 1,2-cis-EQUATORIAL GLYCOSIDES -- 12.2.1. β-Mannopyranosides. 
903 |a EBC-AC 
994 |a 92  |b HCD