Narrow operators on function spaces and vector lattices / by Mikhail Popov, Beata Randrianantoanina.

"Most classes of operators that are not isomorphic embeddings are characterized by some kind of a "smallness" condition. Narrow operators are those operators defined on function spaces that are "small" at {-1,0,1}-valued functions, e.g. compact operators are narrow. The orig...

Full description

Saved in:
Bibliographic Details
Main Author: Popov, Mykhaĭlo Mykhaĭlovych (Author)
Other Authors: Randrianantoanina, Beata
Format: eBook
Language:English
Published: Berlin : De Gruyter, [2013]
Series:De Gruyter studies in mathematics ; 45.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 ocn826444443
003 OCoLC
005 20241006213017.0
006 m o d
007 cr |n|||||||||
007 cr |||||||||||
008 130201s2013 gw ob 001 0 eng d
010 |z  2012035986 
040 |a YDXCP  |b eng  |e pn  |c YDXCP  |d OCLCO  |d N$T  |d E7B  |d N$T  |d IDEBK  |d CDX  |d OCLCF  |d LRU  |d EBLCP  |d DEBSZ  |d OCLCQ  |d UAB  |d COO  |d OCLCQ  |d UIU  |d AGLDB  |d MOR  |d PIFAG  |d OCLCQ  |d MERUC  |d OCLCQ  |d ZCU  |d U3W  |d STF  |d WRM  |d OCLCQ  |d VTS  |d COCUF  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d MUU  |d SFB  |d VLY  |d QGK  |d DST  |d TNZ  |d SHC  |d OCLCQ  |d OCLCO  |d OCLCL  |d SXB  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 826479699  |a 1131945580  |a 1259130325 
020 |a 3110263343  |q (electronic bk.) 
020 |a 9783110263343  |q (electronic bk.) 
020 |z 9783110263039  |q (hardcover ;  |q alk. paper) 
020 |z 3110263033  |q (hardcover ;  |q alk. paper) 
024 7 |a 10.1515/9783110263343  |2 doi 
035 |a (OCoLC)826444443  |z (OCoLC)826479699  |z (OCoLC)1131945580  |z (OCoLC)1259130325 
041 |a eng 
050 4 |a QA329.5  |b .P67 2013eb 
072 7 |a MAT  |x 031000  |2 bisacsh 
049 |a HCDD 
100 1 |a Popov, Mykhaĭlo Mykhaĭlovych,  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjDpHGCY4KvcxpjPGC4xrC 
245 1 0 |a Narrow operators on function spaces and vector lattices /  |c by Mikhail Popov, Beata Randrianantoanina. 
260 |a Berlin :  |b De Gruyter,  |c [2013] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter studies in mathematics ;  |v 45 
504 |a Includes bibliographical references and indexes. 
505 0 |a Introduction and preliminaries -- Each "small" operator is narrow -- Applications to nonlocally convex spaces -- Noncompact narrow operators -- Ideal properties, conjugates, spectrum and numerical radii -- Daugavet-type properties of Lebesgue and Lorentz spaces -- Strict singularity versus narrowness -- Weak embeddings of L1 -- Spaces X for which every operator T L(Lp, X) is narrow -- Narrow operators on vector lattices -- Some variants of the notion of narrow operators -- Open problems. 
520 |a "Most classes of operators that are not isomorphic embeddings are characterized by some kind of a "smallness" condition. Narrow operators are those operators defined on function spaces that are "small" at {-1,0,1}-valued functions, e.g. compact operators are narrow. The original motivation to consider such operators came from theory of embeddings of Banach spaces, but since then they were also applied to the study of the Daugavet property and to other geometrical problems of functional analysis. The question of when a sum of two narrow operators is narrow, has led to deep developments of the theory of narrow operators, including an extension of the notion to vector lattices and investigations of connections to regular operators. Narrow operators were a subject of numerous investigations during the last 30 years. This monograph provides a comprehensive presentation putting them in context of modern theory. It gives an in depth systematic exposition of concepts related to and influenced by narrow operators, starting from basic results and building up to most recent developments. The authors include a complete bibliography and many attractive open problems."--Publisher's website. 
588 0 |a Description based on online resource; title from digital title page (DeGruyter, viewed September 15, 2023). 
546 |a In English. 
650 0 |a Narrow operators. 
650 0 |a Riesz spaces. 
650 0 |a Function spaces. 
650 7 |a MATHEMATICS  |x Transformations.  |2 bisacsh 
650 7 |a Function spaces  |2 fast 
650 7 |a Narrow operators  |2 fast 
650 7 |a Riesz spaces  |2 fast 
700 1 |a Randrianantoanina, Beata.  |1 https://id.oclc.org/worldcat/entity/E39PCjDvjQPk6rwycMrV8Kgf4m 
776 0 8 |i Print version:  |a Popov, Mykhaĭlo Mykhaĭlovych.  |t Narrow operators on function spaces and vector lattices.  |d Berlin : De Gruyter, [2013]  |z 9783110263039  |w (DLC) 2012035986  |w (OCoLC)818735918 
830 0 |a De Gruyter studies in mathematics ;  |v 45. 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=893867  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD