Laser metrology in fluid mechanics : granulometry, temperature and concentration measurements / edited by Alain Boutier.

In fluid mechanics, non-intrusive measurements are fundamental in order to improve knowledge of the behavior and main physical phenomena of flows in order to further validate codes. The principles and characteristics of the different techniques available in laser metrology are described in detail in...

Full description

Saved in:
Bibliographic Details
Main Author: Boutier, A. (Alain)
Format: eBook
Language:English
Published: London : Hoboken, NJ : ISTE ; John Wiley & Sons, 2013.
Series:Waves series.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Title Page
  • Contents
  • Preface
  • Introduction
  • Chapter 1. Basics on Light Scattering by Particles
  • 1.1. Introduction
  • 1.2. A brief synopsis of electromagnetic theory
  • 1.2.1. Maxwell's equations
  • 1.2.2. Harmonic electromagnetic plane waves
  • 1.2.3. Optical constants
  • 1.2.4. Light scattering by a single particle
  • 1.3. Methods using separation of variables
  • 1.3.1. Lorenz-Mie (or Mie) theory
  • 1.3.2. Debye and complex angular momentum theories
  • 1.4. Rayleigh theory and the discrete dipole approximation
  • 1.4.1. Rayleigh theory
  • 1.4.2. Discrete dipole approximation
  • 1.5. The T-matrix method
  • 1.6. Physical (or wave) optics models
  • 1.6.1. Huygens-Fresnel integral
  • 1.6.2. Fraunhofer diffraction theory for a particle with a circular cross section
  • 1.6.3. Airy theory of the rainbow
  • 1.6.4. Marston's physical-optics approximation
  • 1.7. Geometrical optics
  • 1.7.1. Calculation of the scattering angle
  • 1.7.2. Calculation of the intensity of rays
  • 1.7.3. Calculation of the phase and amplitude of rays
  • 1.8. Multiple scattering and Monte Carlo models
  • 1.8.1. Scattering by an optically diluted particle system
  • 1.8.2. Multiple scattering
  • 1.8.3. Monte Carlo method
  • 1.9. Conclusion
  • 1.10. Bibliography
  • Chapter 2. Optical Particle Characterization
  • 2.1. Introduction
  • 2.2. Particles in flows
  • 2.2.1. Diameter, shape and concentration
  • 2.2.2. Statistical representation of particle size data
  • 2.2.3. Concentrations and fluxes
  • 2.3. An attempt to classify OPC techniques
  • 2.3.1. Physical principles and measured quantities
  • 2.3.2. Nature and procedure to achieve statistics
  • 2.4. Phase Doppler interferometry (or anemometry)
  • 2.4.1. Principle
  • 2.4.2. Modeling the phase-diameter relationship
  • 2.4.3. Experimental setup and typical results
  • 2.4.4. Conclusion
  • 2.5. Ellipsometry.
  • 2.6. Forward (or "laser") diffraction
  • 2.6.1. Principle
  • 2.6.2. Modeling and inversion of diffraction patterns
  • 2.6.3. Typical experimental setup and results
  • 2.6.4. Conclusion
  • 2.7. Rainbow and near-critical-angle diffractometry techniques
  • 2.7.1. Similarities to forward diffraction
  • 2.7.2. Rainbow diffractometry
  • 2.7.3. Near-critical-angle diffractometry
  • 2.8. Classical shadowgraph imaging
  • 2.8.1. Principle and classical setup
  • 2.8.2. One-dimensional shadow Doppler technique
  • 2.8.3. Calculation of particle images using the point spread function
  • 2.8.4. Conclusion
  • 2.9. Out-of-focus interferometric imaging
  • 2.9.1. Principle
  • 2.9.2. Modeling the diameter-angular frequency relationship
  • 2.9.3. Conclusion
  • 2.10. Holography of particles
  • 2.10.1. Gabor holography for holographic films
  • 2.10.2. Inline digital holography
  • 2.10.3. Conclusion
  • 2.11. Light extinction spectrometry
  • 2.11.1. Principle
  • 2.11.2. Algebraic inverse method
  • 2.11.3. Experimental setup and conclusion
  • 2.12. Photon correlation spectroscopy
  • 2.13. Laser-induced fluorescence and elastic-scattering imaging ratio
  • 2.13.1. Principle
  • 2.13.2. Experimental setup and results
  • 2.13.3. Conclusion
  • 2.14. Laser-induced incandescence
  • 2.15. General conclusions
  • 2.16. Bibliography
  • Chapter 3. Laser-Induced Fluorescence
  • 3.1. Recall on energy quantification of molecules
  • 3.1.1. Radiative transitions
  • 3.1.2. Energy level thermo-statistics
  • 3.1.3. Franck-Condon principle
  • 3.1.4. Non-radiative transitions
  • 3.1.5. Line width
  • 3.2. Laser-induced fluorescence principles
  • 3.2.1. Absorption kinetics
  • 3.2.2. Fluorescence signal
  • 3.2.3. Fluorescence detection
  • 3.2.4. Absorption along optical path
  • 3.2.5. Fluorescence measurement device
  • 3.3. Applications of laser-induced fluorescence in gases
  • 3.3.1. Generalities.
  • 3.3.2. Diatomic molecules
  • 3.3.3. Poly-Atomic molecular tracers
  • 3.4. Laser-induced fluorescence in liquids
  • 3.4.1. Principles and modeling
  • 3.4.2. Fluorescence reabsorption
  • 3.4.3. Applications to concentration measurement
  • 3.4.4. Application to temperature measurement
  • 3.5. Bibliography
  • Chapter 4. Diode Laser Absorption Spectroscopy Techniques
  • 4.1. High spectral resolution absorption spectroscopy in fluid mechanics
  • 4.2. Recap on molecular absorption
  • 4.2.1. Line profile
  • 4.2.2. Line strength
  • 4.3. Absorption spectroscopy bench
  • 4.3.1. Emitting optics
  • 4.3.2. Optical detection
  • 4.3.3. Spectra processing
  • 4.4. Applications in hypersonic
  • 4.4.1. F4 characteristics
  • 4.4.2. Setup installed at F4
  • 4.4.3. Results obtained at F4 and HEG
  • 4.5. Other applications of diode laser absorption spectroscopy
  • 4.5.1. Combustion applications
  • 4.5.2. Applications to atmospheric probing
  • 4.6. Other devices for diode laser absorption spectroscopy
  • 4.6.1. Multipass spectrometry
  • 4.6.2. Spectrometry in a resonant cavity
  • 4.7. Perspectives and conclusion on diode laser absorption spectroscopy
  • 4.7.1. Laser source: use of non-cryogenic diodes
  • 4.7.2. Spatial resolution: use of probe in flow
  • 4.7.3. Use of frequency combs
  • 4.8. Bibliography
  • Chapter 5. Nonlinear Optical Sources and Techniques for Optical Diagnostic
  • 5.1. Introduction to nonlinear optics
  • 5.2. Main processes in nonlinear optics
  • 5.2.1. Propagation effects
  • 5.2.2. Second- and third-order nonlinearities
  • 5.2.3. Phase matching notion
  • 5.3. Nonlinear sources for optical metrology
  • 5.3.1. Sum frequency generation and frequency doubling
  • 5.3.2. Raman converters
  • 5.3.3. Optical parametric generators and oscillators
  • 5.4. Nonlinear techniques for optical diagnostic
  • 5.4.1. Introduction to four-wave mixing techniques.
  • 5.4.2. Temperature and concentration measurements in four-wave mixing
  • 5.4.3. Velocity measurements in four-wave mixing
  • 5.5. Bibliography
  • Chapter 6. Laser Safety
  • 6.1. Generalities on laser safety
  • 6.2. Laser type and classification
  • 6.3. Laser risks: nature and effects
  • 6.3.1. Biological risks
  • 6.3.2. Risks to the eye
  • 6.3.3. Risks to the skin
  • 6.3.4. Risks to hearing
  • 6.3.5. Other biological risks
  • 6.4. Protections
  • 6.4.1. Accident prevention
  • 6.4.2. Collective protection
  • 6.4.3. Individual protection
  • 6.5. Safety advice
  • 6.6. Human behavior
  • Conclusion
  • Nomenclature
  • List of Authors
  • Index.