Computational neuroanatomy : the methods / Moo K. Chung.

Computational neuroanatomy is an emerging field that utilizes various non-invasive brain imaging modalities, such as MRI and DTI, in quantifying the spatiotemporal dynamics of the human brain structures in both normal and clinical populations. This discip.

Saved in:
Bibliographic Details
Main Author: Chung, Moo K.
Format: eBook
Language:English
Published: Singapore ; Hackensack, NJ : World Scientific Pub. Co., ©2013.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 a 4500
001 ocn828792986
003 OCoLC
005 20241006213017.0
006 m o d
007 cr |n|||||||||
008 130302s2013 si a ob 001 0 eng d
010 |a  2012554948 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d N$T  |d DEBSZ  |d GZM  |d CDX  |d OCLCO  |d STF  |d IDEBK  |d YDXCP  |d OCLCQ  |d K6U  |d OCLCQ  |d AGLDB  |d MERUC  |d OCLCQ  |d ZCU  |d U3W  |d VTS  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d JBG  |d REC  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d LEAUB  |d OCLCO  |d OCLCQ  |d OCLCL  |d OCLCQ  |d SXB  |d OCLCQ  |d OCLCO 
019 |a 827955303  |a 884809970  |a 889302343  |a 1055356380  |a 1065875848  |a 1081220111  |a 1086441087  |a 1228554857 
020 |a 9789814335447  |q (electronic bk.) 
020 |a 9814335444  |q (electronic bk.) 
020 |a 9814335436  |q (hbk.) 
020 |a 9789814335430  |q (hbk.) 
020 |a 9781299133068  |q (MyiLibrary) 
020 |a 1299133061  |q (MyiLibrary) 
020 |z 9789814335430 
035 |a (OCoLC)828792986  |z (OCoLC)827955303  |z (OCoLC)884809970  |z (OCoLC)889302343  |z (OCoLC)1055356380  |z (OCoLC)1065875848  |z (OCoLC)1081220111  |z (OCoLC)1086441087  |z (OCoLC)1228554857 
037 |a 444556  |b MIL 
050 4 |a QM451 
072 7 |a MED  |x 005000  |2 bisacsh 
072 7 |a SCI  |x 036000  |2 bisacsh 
049 |a HCDD 
100 1 |a Chung, Moo K.  |1 https://id.oclc.org/worldcat/entity/E39PCjw4mBT8qCGKmJcxxy7Mpq 
245 1 0 |a Computational neuroanatomy :  |b the methods /  |c Moo K. Chung. 
260 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific Pub. Co.,  |c ©2013. 
300 |a 1 online resource (xv, 403 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 367-398) and index. 
505 0 |a Preface; Contents; 1. Statistical Preliminary; 1.1 General Linear Models; 1.2 Random Fields; 1.2.1 Covariance Functions; 1.2.2 Gaussian Random Fields; 1.2.3 Differentiation and Integration of Fields; 1.2.4 Statistical Inference on Fields; 1.3 Multiple Comparisons; 1.3.1 Bonferroni Correction; 1.3.2 Random Fields Theory; 1.3.3 Poisson Clumping Heuristic; 1.3.4 Euler Characteristic Method; 1.3.5 Intrinsic Volume; 1.3.6 Euler Characteristic Density; 1.4 Statistical Power Analysis; 1.4.1 Statistical Power at a Voxel; 1.4.2 Statistical Power under Multiple Comparisons. 
505 8 |a 2. Deformation-Based Morphometry2.1 Image Registration; 2.2 Deformation-Based Morphometry; 2.3 Displacement Vector Fields; 2.3.1 Dynamic Model on Displacement; 2.3.2 Local Inference via Hotelling's T2-Field; 2.3.3 Detecting Local Brain Growth; 2.4 Global Inference via Integral Statistic; 2.4.1 Karhunen-Lo eve Expansion; 2.4.2 Mercer's Theorem; 2.4.3 Integral Statistic on Displacement; 3. Tensor-Based Morphometry; 3.1 Jacobian Determinant; 3.2 Distributional Assumptions; 3.3 Local Volume Changes; 3.4 Longitudinal Modeling; 3.4.1 Normal Brain Development in Children. 
505 8 |a 3.5 Global Inference via Divergence Theorem3.6 Second Order Tensor Fields; 3.6.1 Membrane Spline Energy; 3.6.2 Vorticity Tensor Fields; 3.6.3 Generalized Variance Field; 4. Voxel-Based Morphometry; 4.1 Image Segmentation; 4.1.1 Mumford-Shah Model; 4.1.2 Level Sets; 4.1.3 Active Contours; 4.1.4 Deformable Surface Models; 4.1.5 Thin-Plate Spline Thresholding; 4.2 Mixture Models; 4.2.1 Bayesian Segmentation; 4.2.2 Mixture Models; 4.2.3 Expectation Maximization Algorithm; 4.2.4 Two Components Gaussian Mixtures; 4.3 Voxel-Based Morphometry; 4.3.1 ROI Volume Estimation in VBM. 
505 8 |a 4.3.2 Limitations of Witelson Partition4.3.3 General Linear Models on Tissue Densities; 4.3.4 2D VBM Applied to Corpus Callosum; 5. Geometry of Cortical Manifolds; 5.1 Surface Parameterization; 5.1.1 B-Spline Parameterization; 5.1.2 B-Spline Curves; 5.1.3 Quadratic Parameterization; 5.1.4 Fourier Descriptors; 5.2 Surface Normals and Curvatures; 5.2.1 Surface Normals; 5.2.2 Gaussian and Mean Curvatures; 5.2.3 Curvatures of Polynomial Surfaces; 5.3 Laplace-Beltrami Operator; 5.3.1 Eigenfunctions of Laplace-Beltrami Operator; 5.3.2 Multiplicity of Eigenfunctions. 
505 8 |a 5.3.3 Laplace-Beltrami Shape Descriptors5.3.4 Second Eigenfunctions; 5.3.5 Dirichlet Energy; 5.3.6 Fiedler's Vector; 5.4 Finite Element Methods; 5.4.1 Pieacewise Linear Functions; 5.4.2 Mass and Stiffness Matrices; 6. Smoothing on Cortical Manifolds; 6.1 Gaussian Kernel Smoothing; 6.1.1 Isotropic Gaussian Kernel; 6.1.2 Anisotropic Gaussian Kernel; 6.2 Diffusion Smoothing; 6.2.1 Diffusion in Euclidean Space; 6.2.2 Diffusion in 1D; 6.2.3 Diffusion on Triangular Mesh; 6.2.4 Finite Difference Scheme; 6.3 Heat Kernel Smoothing; 6.3.1 Heat Kernel; 6.3.2 Heat Kernel Smoothing. 
500 |a 6.3.3 Iterated Kernel Smoothing. 
520 |a Computational neuroanatomy is an emerging field that utilizes various non-invasive brain imaging modalities, such as MRI and DTI, in quantifying the spatiotemporal dynamics of the human brain structures in both normal and clinical populations. This discip. 
588 0 |a Print version record. 
650 0 |a Neuroanatomy  |x Mathematics. 
650 0 |a Neuroanatomy  |x Statistical methods. 
650 7 |a MEDICAL  |x Anatomy.  |2 bisacsh 
650 7 |a SCIENCE  |x Life Sciences  |x Human Anatomy & Physiology.  |2 bisacsh 
758 |i has work:  |a Computational neuroanatomy (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGVrH7G8t3pb8p7vhXpdcP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Chung, Moo K.  |t Computational neuroanatomy.  |d Singapore ; New Jersey : World Scientific, ©2013  |z 9789814335430  |w (OCoLC)819383781 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=1126827  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD