|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
ocn828792986 |
003 |
OCoLC |
005 |
20241006213017.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
130302s2013 si a ob 001 0 eng d |
010 |
|
|
|a 2012554948
|
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d N$T
|d DEBSZ
|d GZM
|d CDX
|d OCLCO
|d STF
|d IDEBK
|d YDXCP
|d OCLCQ
|d K6U
|d OCLCQ
|d AGLDB
|d MERUC
|d OCLCQ
|d ZCU
|d U3W
|d VTS
|d ICG
|d INT
|d VT2
|d OCLCQ
|d WYU
|d JBG
|d REC
|d OCLCQ
|d DKC
|d OCLCQ
|d M8D
|d UKAHL
|d OCLCQ
|d LEAUB
|d OCLCO
|d OCLCQ
|d OCLCL
|d OCLCQ
|d SXB
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 827955303
|a 884809970
|a 889302343
|a 1055356380
|a 1065875848
|a 1081220111
|a 1086441087
|a 1228554857
|
020 |
|
|
|a 9789814335447
|q (electronic bk.)
|
020 |
|
|
|a 9814335444
|q (electronic bk.)
|
020 |
|
|
|a 9814335436
|q (hbk.)
|
020 |
|
|
|a 9789814335430
|q (hbk.)
|
020 |
|
|
|a 9781299133068
|q (MyiLibrary)
|
020 |
|
|
|a 1299133061
|q (MyiLibrary)
|
020 |
|
|
|z 9789814335430
|
035 |
|
|
|a (OCoLC)828792986
|z (OCoLC)827955303
|z (OCoLC)884809970
|z (OCoLC)889302343
|z (OCoLC)1055356380
|z (OCoLC)1065875848
|z (OCoLC)1081220111
|z (OCoLC)1086441087
|z (OCoLC)1228554857
|
037 |
|
|
|a 444556
|b MIL
|
050 |
|
4 |
|a QM451
|
072 |
|
7 |
|a MED
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 036000
|2 bisacsh
|
049 |
|
|
|a HCDD
|
100 |
1 |
|
|a Chung, Moo K.
|1 https://id.oclc.org/worldcat/entity/E39PCjw4mBT8qCGKmJcxxy7Mpq
|
245 |
1 |
0 |
|a Computational neuroanatomy :
|b the methods /
|c Moo K. Chung.
|
260 |
|
|
|a Singapore ;
|a Hackensack, NJ :
|b World Scientific Pub. Co.,
|c ©2013.
|
300 |
|
|
|a 1 online resource (xv, 403 pages) :
|b illustrations (some color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references (pages 367-398) and index.
|
505 |
0 |
|
|a Preface; Contents; 1. Statistical Preliminary; 1.1 General Linear Models; 1.2 Random Fields; 1.2.1 Covariance Functions; 1.2.2 Gaussian Random Fields; 1.2.3 Differentiation and Integration of Fields; 1.2.4 Statistical Inference on Fields; 1.3 Multiple Comparisons; 1.3.1 Bonferroni Correction; 1.3.2 Random Fields Theory; 1.3.3 Poisson Clumping Heuristic; 1.3.4 Euler Characteristic Method; 1.3.5 Intrinsic Volume; 1.3.6 Euler Characteristic Density; 1.4 Statistical Power Analysis; 1.4.1 Statistical Power at a Voxel; 1.4.2 Statistical Power under Multiple Comparisons.
|
505 |
8 |
|
|a 2. Deformation-Based Morphometry2.1 Image Registration; 2.2 Deformation-Based Morphometry; 2.3 Displacement Vector Fields; 2.3.1 Dynamic Model on Displacement; 2.3.2 Local Inference via Hotelling's T2-Field; 2.3.3 Detecting Local Brain Growth; 2.4 Global Inference via Integral Statistic; 2.4.1 Karhunen-Lo eve Expansion; 2.4.2 Mercer's Theorem; 2.4.3 Integral Statistic on Displacement; 3. Tensor-Based Morphometry; 3.1 Jacobian Determinant; 3.2 Distributional Assumptions; 3.3 Local Volume Changes; 3.4 Longitudinal Modeling; 3.4.1 Normal Brain Development in Children.
|
505 |
8 |
|
|a 3.5 Global Inference via Divergence Theorem3.6 Second Order Tensor Fields; 3.6.1 Membrane Spline Energy; 3.6.2 Vorticity Tensor Fields; 3.6.3 Generalized Variance Field; 4. Voxel-Based Morphometry; 4.1 Image Segmentation; 4.1.1 Mumford-Shah Model; 4.1.2 Level Sets; 4.1.3 Active Contours; 4.1.4 Deformable Surface Models; 4.1.5 Thin-Plate Spline Thresholding; 4.2 Mixture Models; 4.2.1 Bayesian Segmentation; 4.2.2 Mixture Models; 4.2.3 Expectation Maximization Algorithm; 4.2.4 Two Components Gaussian Mixtures; 4.3 Voxel-Based Morphometry; 4.3.1 ROI Volume Estimation in VBM.
|
505 |
8 |
|
|a 4.3.2 Limitations of Witelson Partition4.3.3 General Linear Models on Tissue Densities; 4.3.4 2D VBM Applied to Corpus Callosum; 5. Geometry of Cortical Manifolds; 5.1 Surface Parameterization; 5.1.1 B-Spline Parameterization; 5.1.2 B-Spline Curves; 5.1.3 Quadratic Parameterization; 5.1.4 Fourier Descriptors; 5.2 Surface Normals and Curvatures; 5.2.1 Surface Normals; 5.2.2 Gaussian and Mean Curvatures; 5.2.3 Curvatures of Polynomial Surfaces; 5.3 Laplace-Beltrami Operator; 5.3.1 Eigenfunctions of Laplace-Beltrami Operator; 5.3.2 Multiplicity of Eigenfunctions.
|
505 |
8 |
|
|a 5.3.3 Laplace-Beltrami Shape Descriptors5.3.4 Second Eigenfunctions; 5.3.5 Dirichlet Energy; 5.3.6 Fiedler's Vector; 5.4 Finite Element Methods; 5.4.1 Pieacewise Linear Functions; 5.4.2 Mass and Stiffness Matrices; 6. Smoothing on Cortical Manifolds; 6.1 Gaussian Kernel Smoothing; 6.1.1 Isotropic Gaussian Kernel; 6.1.2 Anisotropic Gaussian Kernel; 6.2 Diffusion Smoothing; 6.2.1 Diffusion in Euclidean Space; 6.2.2 Diffusion in 1D; 6.2.3 Diffusion on Triangular Mesh; 6.2.4 Finite Difference Scheme; 6.3 Heat Kernel Smoothing; 6.3.1 Heat Kernel; 6.3.2 Heat Kernel Smoothing.
|
500 |
|
|
|a 6.3.3 Iterated Kernel Smoothing.
|
520 |
|
|
|a Computational neuroanatomy is an emerging field that utilizes various non-invasive brain imaging modalities, such as MRI and DTI, in quantifying the spatiotemporal dynamics of the human brain structures in both normal and clinical populations. This discip.
|
588 |
0 |
|
|a Print version record.
|
650 |
|
0 |
|a Neuroanatomy
|x Mathematics.
|
650 |
|
0 |
|a Neuroanatomy
|x Statistical methods.
|
650 |
|
7 |
|a MEDICAL
|x Anatomy.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Life Sciences
|x Human Anatomy & Physiology.
|2 bisacsh
|
758 |
|
|
|i has work:
|a Computational neuroanatomy (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGVrH7G8t3pb8p7vhXpdcP
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Chung, Moo K.
|t Computational neuroanatomy.
|d Singapore ; New Jersey : World Scientific, ©2013
|z 9789814335430
|w (OCoLC)819383781
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=1126827
|y Click for online access
|
903 |
|
|
|a EBC-AC
|
994 |
|
|
|a 92
|b HCD
|