|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
ocn851088611 |
003 |
OCoLC |
005 |
20241006213017.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s2000 riu ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d OCLCF
|d N$T
|d LLB
|d E7B
|d YDXCP
|d OCLCQ
|d EBLCP
|d OCLCQ
|d LEAUB
|d UKAHL
|d OCLCQ
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d INARC
|d OCLCL
|d SXB
|d OCLCQ
|
019 |
|
|
|a 922965032
|
020 |
|
|
|a 9781470402709
|q (electronic bk.)
|
020 |
|
|
|a 147040270X
|q (electronic bk.)
|
020 |
|
|
|z 0821813978
|q (alk. paper)
|
020 |
|
|
|z 9780821813973
|q (alk. paper)
|
035 |
|
|
|a (OCoLC)851088611
|z (OCoLC)922965032
|
050 |
|
4 |
|a QA3
|b .A57 no. 679
|a QA326
|
072 |
|
7 |
|a MAT
|x 039000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 023000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 026000
|2 bisacsh
|
049 |
|
|
|a HCDD
|
100 |
1 |
|
|a Abramovich, Y. A.
|q (Yuri A.)
|1 https://id.oclc.org/worldcat/entity/E39PCjtBxmmbWxj4WxCCGWhm3P
|
245 |
1 |
0 |
|a Inverses of disjointness preserving operators /
|c Y.A. Abramovich, A.K. Kitover.
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c 2000.
|
300 |
|
|
|a 1 online resource (viii, 164 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 679
|
500 |
|
|
|a "January 2000, volume 143, number 679 (first of 4 numbers)."
|
504 |
|
|
|a Includes bibliographical references (pages 158-162).
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t 1. Setting forth the problems
|t 2. Some history
|t 3. Synopsis of the main results
|t 4. Preliminaries
|t 5. The McPolin-Wickstead and Huijsmans-de Pagter-Koldunov theorems revisited
|t 6. d-bases
|t 7. Band preserving operators and band-projections
|t 8. Central operators and problems A and B
|t 9. Range-domain exchange in the Huijsmans-de Pagter-Koldunov-theorem
|t 10. d-splitting number of disjointness preserving operators
|t 11. Essentially one-dimensional and discrete vector lattices
|t 12. Essentially constant functions and operators on $C$[0,1]
|t 13. Counterexamples
|t 14. Dedekind complete vector lattices and Problems A and B
|t 15. Generalizations to ($r_u$)-complete vector lattices
|t 16. Open problems.
|
650 |
|
0 |
|a Banach modules (Algebra)
|
650 |
|
0 |
|a Operator theory.
|
650 |
|
0 |
|a Banach lattices.
|
650 |
|
7 |
|a MATHEMATICS
|x Essays.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Pre-Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a Banach lattices
|2 fast
|
650 |
|
7 |
|a Banach modules (Algebra)
|2 fast
|
650 |
|
7 |
|a Operator theory
|2 fast
|
700 |
1 |
|
|a Kitover, A. K.
|q (Arkady K.)
|1 https://id.oclc.org/worldcat/entity/E39PCjDfgphVGVCFCQWdTx3wBX
|
776 |
0 |
8 |
|i Print version:
|a Abramovich, Y.A.
|t Inverses of disjointness preserving operators /
|x 0065-9266
|z 9780821813973
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 679.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=3114510
|y Click for online access
|
903 |
|
|
|a EBC-AC
|
994 |
|
|
|a 92
|b HCD
|