|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
ocn851088688 |
003 |
OCoLC |
005 |
20241006213017.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s2003 riua ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d OCLCF
|d LLB
|d E7B
|d OCLCQ
|d EBLCP
|d DEBSZ
|d YDXCP
|d OCLCQ
|d AU@
|d UKAHL
|d OCLCQ
|d LEAUB
|d OCLCQ
|d VT2
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|d SXB
|d OCLCQ
|
019 |
|
|
|a 908039702
|a 922982046
|a 1086530477
|
020 |
|
|
|a 9781470403638
|
020 |
|
|
|a 1470403633
|
020 |
|
|
|z 9780821831847
|
020 |
|
|
|z 0821831844
|
035 |
|
|
|a (OCoLC)851088688
|z (OCoLC)908039702
|z (OCoLC)922982046
|z (OCoLC)1086530477
|
050 |
|
4 |
|a QA3
|b .A57 no. 765
|a QA183
|
049 |
|
|
|a HCDD
|
100 |
1 |
|
|a Bieri, Robert.
|
245 |
1 |
0 |
|a Connectivity properties of group actions on non-positively curved spaces /
|c Robert Bieri, Ross Geoghegan.
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c 2003.
|
300 |
|
|
|a 1 online resource (xiii, 83 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 765
|
500 |
|
|
|a "Volume 161, number 765 (second of 5 numbers)."
|
504 |
|
|
|a Includes bibliographical references (pages 81-83).
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t 1. Introduction
|t Part 1. Controlled connectivity and openness results
|t 2. Outline, main results and examples
|t 3. Technicalities concerning the $CC^{n-1}$ property
|t 4. Finitary maps and sheaves of maps
|t 5. Sheaves and finitary maps over a control space
|t 6. Construction of sheaves with positive shift
|t 7. Controlled connectivity as an open condition
|t 8. Completion of the proofs of Theorems A and A
|t 9. The invariance theorem
|t Part 2. The geometric invariants
|t 10. Outline, main results and examples
|t 11. Further technicalities on CAT(0) spaces
|t 12. $CC^{n-1}$ over endpoints
|t 13. Finitary contractions towards endpoints
|t 14. From $CC^{n-1}$ over endpoints to contractions
|t 15. Proofs of Theorems E-H.
|
650 |
|
0 |
|a Geometric group theory.
|
650 |
|
0 |
|a Connections (Mathematics)
|
650 |
|
0 |
|a Global differential geometry.
|
650 |
|
7 |
|a Connections (Mathematics)
|2 fast
|
650 |
|
7 |
|a Geometric group theory
|2 fast
|
650 |
|
7 |
|a Global differential geometry
|2 fast
|
700 |
1 |
|
|a Geoghegan, Ross,
|d 1963-
|1 https://id.oclc.org/worldcat/entity/E39PCjFDWyT6mfdDHGQwjcJ9H3
|
776 |
0 |
8 |
|i Print version:
|a Bieri, Robert.
|t Connectivity properties of group actions on non-positively curved spaces /
|x 0065-9266
|z 9780821831847
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 765.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=3114352
|y Click for online access
|
903 |
|
|
|a EBC-AC
|
994 |
|
|
|a 92
|b HCD
|