|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
ocn851088782 |
003 |
OCoLC |
005 |
20241006213017.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s1997 riua ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d OCLCF
|d N$T
|d LLB
|d YDXCP
|d E7B
|d OCLCQ
|d EBLCP
|d OCLCQ
|d UKAHL
|d OCLCQ
|d LEAUB
|d OCLCQ
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|d SXB
|d OCLCQ
|d UAB
|
019 |
|
|
|a 908039622
|a 912299865
|a 922981870
|a 1086472722
|a 1256336444
|
020 |
|
|
|a 9781470402099
|q (electronic bk.)
|
020 |
|
|
|a 1470402092
|q (electronic bk.)
|
020 |
|
|
|z 0821806394
|q (acid-free paper)
|
020 |
|
|
|z 9780821806395
|q (acid-free paper)
|
035 |
|
|
|a (OCoLC)851088782
|z (OCoLC)908039622
|z (OCoLC)912299865
|z (OCoLC)922981870
|z (OCoLC)1086472722
|z (OCoLC)1256336444
|
050 |
|
4 |
|a QA3
|b .A57 no. 620
|a QA183
|
072 |
|
7 |
|a MAT
|x 039000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 023000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 026000
|2 bisacsh
|
049 |
|
|
|a HCDD
|
100 |
1 |
|
|a Guba, Victor,
|d 1962-
|1 https://id.oclc.org/worldcat/entity/E39PCjrYd9tyhXbBDHDbWW9jyd
|
245 |
1 |
0 |
|a Diagram groups /
|c Victor Guba, Mark Sapir.
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c ©1997.
|
300 |
|
|
|a 1 online resource (viii, 117 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 620
|
500 |
|
|
|a "November 1997, volume 130, number 620 (end of volume)."
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t 1. Introduction
|t 2. Rewrite systems
|t 3. Semigroup diagrams
|t 4. Monoid pictures
|t 5. Diagram groups
|t 6. Squier's complexes
|t 7. Monoid presentations and the diagram groups
|t 8. Diagram groups and group theoretic constructions
|t 9. Diagram groups over complete presentations
|t 10. Finitely presented diagram groups
|t 11. Commutator subgroups of diagram groups
|t 12. Asphericity
|t 13. Recursive presentations of diagram groups
|t 14. Computational complexity of the word problem in diagram groups
|t 15. Combinatorics on diagrams
|t 16. Different types of diagrams and finitely presented simple groups
|t 17. Open problems.
|
650 |
|
0 |
|a Geometric group theory.
|
650 |
|
0 |
|a Homology theory.
|
650 |
|
7 |
|a MATHEMATICS
|x Essays.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Pre-Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a Geometric group theory
|2 fast
|
650 |
|
7 |
|a Homology theory
|2 fast
|
700 |
1 |
|
|a Sapir, Mark,
|d 1957-
|1 https://id.oclc.org/worldcat/entity/E39PBJqbqfQ7pJ93RH9XgQ3G73
|
776 |
0 |
8 |
|i Print version:
|a Guba, Victor, 1962-
|t Diagram groups /
|x 0065-9266
|z 9780821806395
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 620.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=3114370
|y Click for online access
|
903 |
|
|
|a EBC-AC
|
994 |
|
|
|a 92
|b HCD
|