Electrochemical Supercapacitors : Scientific Fundamentals and Technological Applications / by B.E. Conway.

The first model for the distribution of ions near the surface of a metal electrode was devised by Helmholtz in 1874. He envisaged two parallel sheets of charges of opposite sign located one on the metal surface and the other on the solution side, a few nanometers away, exactly as in the case of a pa...

Full description

Saved in:
Bibliographic Details
Main Author: Conway, B. E.
Format: eBook
Language:English
Published: New York : Springer Science+Business Media, LLC, 1999.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 ocn851817034
003 OCoLC
005 20240909213021.0
006 m o d
007 cr mnu---uuaaa
008 130405s1999 mau o 001 0 eng
040 |a AU@  |b eng  |e pn  |c AU@  |d OCLCQ  |d OCLCO  |d GW5XE  |d OCLCQ  |d OCLCF  |d UA@  |d COO  |d OCLCQ  |d EBLCP  |d OCLCQ  |d YDX  |d UAB  |d OCLCQ  |d AU@  |d TKN  |d LEAUB  |d OCLCQ  |d AFU  |d OCLCO  |d OCL  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCL  |d SXB  |d OCLCQ 
019 |a 934974987  |a 968503880  |a 1191153141 
020 |a 9781475730586  |q (electronic bk.) 
020 |a 1475730586  |q (electronic bk.) 
020 |z 9781475730609 
020 |z 1475730608 
020 |z 1475730586 
024 7 |a 10.1007/978-1-4757-3058-6  |2 doi 
035 |a (OCoLC)851817034  |z (OCoLC)934974987  |z (OCoLC)968503880  |z (OCoLC)1191153141 
050 4 |a TK2941  |b .C66 1999 
072 7 |a PNRH  |2 bicssc 
072 7 |a SCI013050  |2 bisacsh 
049 |a HCDD 
100 1 |a Conway, B. E. 
245 1 0 |a Electrochemical Supercapacitors :  |b Scientific Fundamentals and Technological Applications /  |c by B.E. Conway. 
264 1 |a New York :  |b Springer Science+Business Media, LLC,  |c 1999. 
300 |a 1 online resource (xxix, 698 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index 
505 0 |a 1 Introduction and Historical Perspective -- 2 Similarities and Differences between Supercapacitors and Batteries for Storing Electrical Energy -- 3 Energetics and Elements of the Kinetics of Electrode Processes -- 4 Elements of Electrostatics Involved in Treatment of Double Layers and Ions at Capacitor Electrode Interphases -- 5 Behavior of Dielectrics in Capacitors and Theories of Dielectric Polarization -- 6 The Double Layer at Capacitor Electrode Interfaces: Its Structure and Capacitance -- 7 Theoretical Treatment and Modeling of the Double Layer at Electrode Interfaces -- 8 Behavior of the Double Layer in Nonaqueous Electrolytes and Nonaqueous Electrolyte Capacitors -- 9 The Double Layer and Surface Functionalities at Carbon -- 10 Electrochemical Capacitors Based on Pseudocapacitance -- 11 The Electrochemical Behavior of Ruthenium Oxide (RuO2) as a Material for Electrochemical Capacitors -- 12 Capacitance Behavior of Films of Conducting, Electrochemically Reactive Polymers -- 13 The Electrolyte Factor in Supercapacitor Design and Performance: Conductivity, Ion Pairing and Solvation -- 14 Electrochemical Behavior at Porous Electrodes; Applications to Capacitors -- 15 Energy Density and Power Density of Electrical Energy Storage Devices -- 16 AC Impedance Behavior of Electrochemical Capacitors and Other Electrochemical Systems -- 17 Treatments of Impedance Behavior of Various Circuits and Modeling of Double-Layer Capacitor Frequency Response -- 18 Self-Discharge of Electrochemical Capacitors in Relation to that at Batteries -- 19 Practical Aspects of Preparation and Evaluation of Electrochemical Capacitors -- 20 Technology Development -- 21 Patent Survey. 
520 |a The first model for the distribution of ions near the surface of a metal electrode was devised by Helmholtz in 1874. He envisaged two parallel sheets of charges of opposite sign located one on the metal surface and the other on the solution side, a few nanometers away, exactly as in the case of a parallel plate capacitor. The rigidity of such a model was allowed for by Gouy and Chapman indeƯ pendently, by considering that ions in solution are subject to thermal motion so that their distribution from the metal surface turns out diffuse. Stern recognized that ions in solution do not behave as point charges as in the Gouy-Chapman treatment, and let the center of the ion charges reside at some distance from the metal surface while the distribution was still governed by the Gouy-Chapman view. Finally, in 1947, D.C. Grahame transferred the knowledge of the strucƯ ture of electrolyte solutions into the model of a metal/solution interface, by enƯ visaging different planes of closest approach to the electrode surface depending on whether an ion is solvated or interacts directly with the solid wall. Thus, the Gouy-Chapman-Stern-Grahame model of the so-called electrical double layer was born, a model that is still qualitatively accepted, although theoretiƯ cians have introduced a number of new parameters of which people were not aware 50 years ago. 
504 |a Includes bibliographical references and index. 
650 0 |a Storage batteries. 
650 0 |a Electrolytic capacitors. 
650 0 |a Electric double layer. 
650 7 |a batteries (electrical)  |2 aat 
650 7 |a Storage batteries  |2 fast 
650 7 |a Electrolytic capacitors  |2 fast 
650 7 |a Electric double layer  |2 fast 
650 7 |a Analytical biochemistry  |2 fast 
650 7 |a Chemistry  |2 fast 
650 7 |a Computer engineering  |2 fast 
650 7 |a Physical organic chemistry  |2 fast 
650 7 |a Surfaces (Physics)  |2 fast 
758 |i has work:  |a Electrochemical supercapacitors (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFBR4vBr9gbfD7Fhvmr44q  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9781475730609 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=3085608  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD