Materials Characterization : Introduction to Microscopic and Spectroscopic Methods.

Now in its second edition, this continues to serve as an ideal textbook for introductory courses on materials characterization, based on the author's experience in teaching advanced undergraduate and postgraduate university students. The new edition retains the successful didactical concept of...

Full description

Saved in:
Bibliographic Details
Main Author: Leng, Y. (Yang)
Format: eBook
Language:English
Published: Wiley, 2013.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Intro
  • Materials Characterization
  • Contents
  • 1 Light Microscopy
  • 1.1 Optical Principles
  • 1.1.1 Image Formation
  • 1.1.2 Resolution
  • 1.1.2.1 Effective Magnification
  • 1.1.2.2 Brightness and Contrast
  • 1.1.3 Depth of Field
  • 1.1.4 Aberrations
  • 1.2 Instrumentation
  • 1.2.1 Illumination System
  • 1.2.2 Objective Lens and Eyepiece
  • 1.2.2.1 Steps for Optimum Resolution
  • 1.2.2.2 Steps to Improve Depth of Field
  • 1.3 Specimen Preparation
  • 1.3.1 Sectioning
  • 1.3.1.1 Cutting
  • 1.3.1.2 Microtomy
  • 1.3.2 Mounting
  • 1.3.3 Grinding and Polishing
  • 1.3.3.1 Grinding
  • 1.3.3.2 Polishing
  • 1.3.4 Etching
  • 1.4 Imaging Modes
  • 1.4.1 Bright-Field and Dark-Field Imaging
  • 1.4.2 Phase-Contrast Microscopy
  • 1.4.3 Polarized-Light Microscopy
  • 1.4.4 Nomarski Microscopy
  • 1.4.5 Fluorescence Microscopy
  • 1.5 Confocal Microscopy
  • 1.5.1 Working Principles
  • 1.5.2 Three-Dimensional Images
  • References
  • Further Reading
  • 2 X-Ray Diffraction Methods
  • 2.1 X-Ray Radiation
  • 2.1.1 Generation of X-Rays
  • 2.1.2 X-Ray Absorption
  • 2.2 Theoretical Background of Diffraction
  • 2.2.1 Diffraction Geometry
  • 2.2.1.1 Bragg's Law
  • 2.2.1.2 Reciprocal Lattice
  • 2.2.1.3 Ewald Sphere
  • 2.2.2 Diffraction Intensity
  • 2.2.2.1 Structure Extinction
  • 2.3 X-Ray Diffractometry
  • 2.3.1 Instrumentation
  • 2.3.1.1 System Aberrations
  • 2.3.2 Samples and Data Acquisition
  • 2.3.2.1 Sample Preparation
  • 2.3.2.2 Acquisition and Treatment of Diffraction Data
  • 2.3.3 Distortions of Diffraction Spectra
  • 2.3.3.1 Preferential Orientation
  • 2.3.3.2 Crystallite Size
  • 2.3.3.3 Residual Stress
  • 2.3.4 Applications
  • 2.3.4.1 Crystal-Phase Identification
  • 2.3.4.2 Quantitative Measurement
  • 2.4 Wide-Angle X-Ray Diffraction and Scattering
  • 2.4.1 Wide-Angle Diffraction
  • 2.4.2 Wide-Angle Scattering
  • References
  • Further Reading
  • 3 Transmission Electron Microscopy
  • 3.1 Instrumentation
  • 3.1.1 Electron Sources
  • 3.1.1.1 Thermionic Emission Gun
  • 3.1.1.2 Field Emission Gun
  • 3.1.2 Electromagnetic Lenses
  • 3.1.3 Specimen Stage
  • 3.2 Specimen Preparation
  • 3.2.1 Prethinning
  • 3.2.2 Final Thinning
  • 3.2.2.1 Electrolytic Thinning
  • 3.2.2.2 Ion Milling
  • 3.2.2.3 Ultramicrotomy
  • 3.3 Image Modes
  • 3.3.1 Mass-Density Contrast
  • 3.3.2 Diffraction Contrast
  • 3.3.3 Phase Contrast
  • 3.3.3.1 Theoretical Aspects
  • 3.3.3.2 Two-Beam and Multiple-Beam Imaging
  • 3.4 Selected-Area Diffraction (SAD)
  • 3.4.1 Selected-Area Diffraction Characteristics
  • 3.4.2 Single-Crystal Diffraction
  • 3.4.2.1 Indexing a Cubic Crystal Pattern
  • 3.4.2.2 Identification of Crystal Phases
  • 3.4.3 Multicrystal Diffraction
  • 3.4.4 Kikuchi Lines
  • 3.5 Images of Crystal Defects
  • 3.5.1 Wedge Fringe
  • 3.5.2 Bending Contours
  • 3.5.3 Dislocations
  • References
  • Further Reading
  • 4 Scanning Electron Microscopy
  • 4.1 Instrumentation
  • 4.1.1 Optical Arrangement
  • 4.1.2 Signal Detection
  • 4.1.2.1 Detector