Extremes in Random Fields : a Theory and Its Applications.

Presents a useful new technique for analyzing the extreme-value behaviour of random fields Modern science typically involves the analysis of increasingly complex data. The extreme values that emerge in the statistical analysis of complex data are often of particular interest. This book focuses on th...

Full description

Saved in:
Bibliographic Details
Main Author: Yakir, Benjamin
Format: eBook
Language:English
Published: Hoboken : Wiley, 2013.
Series:Wiley series in probability and statistics
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000Mi 4500
001 ocn862047261
003 OCoLC
005 20240402213017.0
006 m o d
007 cr |n|||||||||
008 131102s2013 xx o 000 0 eng d
010 |a  2013018539 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d DEBSZ  |d RECBK  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCF  |d OCLCQ  |d ZCU  |d MERUC  |d ICG  |d INT  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d VT2  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 865020992  |a 1244441761 
020 |a 9781118720615 
020 |a 111872061X 
020 |a 9781118720622  |q (electronic bk.) 
020 |a 1118720628  |q (electronic bk.) 
020 |a 9781118620205  |q (hardback) 
020 |a 1118620208  |q (hardback) 
028 0 1 |a EB00088143  |b Recorded Books 
035 |a (OCoLC)862047261  |z (OCoLC)865020992  |z (OCoLC)1244441761 
050 4 |a QA274.45 ǂb Y35 2013eb 
049 |a HCDD 
100 1 |a Yakir, Benjamin. 
245 1 0 |a Extremes in Random Fields :  |b a Theory and Its Applications. 
260 |a Hoboken :  |b Wiley,  |c 2013. 
300 |a 1 online resource (254 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Wiley series in probability and statistics 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright; Contents; Preface; Acknowledgments; Part I Theory; Chapter 1 Introduction; 1.1 Distribution of extremes in random fields; 1.2 Outline of the method; 1.3 Gaussian and asymptotically Gaussian random fields; 1.4 Applications; Chapter 2 Basic examples; 2.1 Introduction; 2.2 A power-one sequential test; 2.3 A kernel-based scanning statistic; 2.4 Other methods; Chapter 3 Approximation of the local rate; 3.1 Introduction; 3.2 Preliminary localization and approximation; 3.2.1 Localization; 3.2.2 A discrete approximation; 3.3 Measure transformation. 
505 8 |a 3.4 Application of the localization theorem3.4.1 Checking Condition I*; 3.4.2 Checking Condition V*; 3.4.3 Checking Condition IV*; 3.4.4 Checking Condition II*; 3.4.5 Checking Condition III*; 3.5 Integration; Chapter 4 From the local to the global; 4.1 Introduction; 4.2 Poisson approximation of probabilities; 4.3 Average run length to false alarm; Chapter 5 The localization theorem; 5.1 Introduction; 5.2 A simplified version of the localization theorem; 5.3 The localization theorem; 5.4 A local limit theorem; 5.5 Edge effects and higher order approximations; Part II Applications. 
505 8 |a Chapter 6 Nonparametric tests: Kolmogorov-Smirnov and Peacock6.1 Introduction; 6.1.1 Classical analysis of the Kolmogorov-Smirnov test; 6.1.2 Peacock's test; 6.2 Analysis of the one-dimensional case; 6.2.1 Preliminary localization; 6.2.2 An approximation by a discrete grid; 6.2.3 Measure transformation; 6.2.4 The asymptotic distribution of the local field and the global term; 6.2.5 Application of the localization theorem and integration; 6.2.6 Checking the conditions of the localization theorem; 6.3 Peacock's test; 6.4 Relations to scanning statistics; Chapter 7 Copy number variations. 
505 8 |a 7.1 Introduction7.2 The statistical model; 7.3 Analysis of statistical properties; 7.3.1 The alternative distribution; 7.3.2 Preliminary localization and approximation; 7.3.3 Measure transformation; 7.3.4 The localization theorem and the local limit theorem; 7.3.5 Checking Condition V*; 7.3.6 Checking Condition II*; 7.4 The false discovery rate; Chapter 8 Sequential monitoring of an image; 8.1 Introduction; 8.2 The statistical model; 8.3 Analysis of statistical properties; 8.3.1 Preliminary localization; 8.3.2 Measure transformation, the localization theorem, and integration. 
505 8 |a 8.3.3 Checking the conditions of the localization theorem8.3.4 Checking Condition V*; 8.3.5 Checking Condition IV*; 8.3.6 Checking Condition II*; 8.4 Optimal change-point detection; Chapter 9 Buffer overflow; 9.1 Introduction; 9.2 The statistical model; 9.2.1 The process of demand from a single source; 9.2.2 The integrated process of demand; 9.3 Analysis of statistical properties; 9.3.1 The large deviation factor; 9.3.2 Preliminary localization; 9.3.3 Approximation by a cruder grid; 9.3.4 Measure transformation; 9.3.5 The localization theorem; 9.3.6 Integration. 
500 |a 9.3.7 Checking the conditions of the localization theorem. 
520 |a Presents a useful new technique for analyzing the extreme-value behaviour of random fields Modern science typically involves the analysis of increasingly complex data. The extreme values that emerge in the statistical analysis of complex data are often of particular interest. This book focuses on the analytical approximations of the statistical significance of extreme values. Several relatively complex applications of the technique to problems that emerge in practical situations are presented. All the examples are difficult to analyze using classical methods, and as a r. 
504 |a Includes bibliographical references (pages 221-222) and index. 
650 0 |a Mathematics. 
650 7 |a mathematics.  |2 aat 
650 7 |a applied mathematics.  |2 aat 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Mathematics  |2 fast 
758 |i has work:  |a Extremes in random fields (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGTvY7BGgCdgQPGPjxWyMP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Yakir, Benjamin.  |t Extremes in Random Fields : A Theory and Its Applications.  |d Hoboken : Wiley, ©2013  |z 9781118620205 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=1434101  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD