Advances in Multi-Photon Processes and Spectroscopy, Vol 15.

In view of the rapid growth in both experimental and theoretical studies of multi-photon processes and multi-photon spectroscopy of atoms, ions and molecules in chemistry, physics, biology, materials science, etc., it is desirable to publish an advanced series of volumes containing review papers tha...

Full description

Saved in:
Bibliographic Details
Main Author: Lin, S. H.
Other Authors: Villaeys, A. A., Fujimura, Y.
Format: eBook
Language:English
Published: Singapore : World Scientific Publishing Company, 2003.
Series:Advances in Multi-Photon Processes and Spectroscopy.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Preface; Contents; Part One: Polarizabilities and Hyperpolarizabilities of Dendritic Systems; Polarizabilities and Hyperpolarizabilities of Dendritic Systems; Abstract; 1. Introduction; 2. Polarizabilities and Hyperpolarizabilities of Dendritic Aggregate Systems; 2.1. Aggregate Models; 2.2. Density Matrix Formalism for Molecular Aggregate under Time-Dependent Electric Field; 2.3. Nonperturbative (Hyper)polarizabilities and Their Partition into the Contribution of Exciton Generation; 2.4. Off-Resonant Polarizabilities of Dendritic Aggregates
  • 2.5. Off-Resonant Second Hyperpolarizabilities of Dendritic Aggregates2.6. Near-Resonant Second Hyperpolarizabilities of Dendritic Aggregates; 2.7. Summary; 3. Polarizabilities and Hyperpolarizabilities of Dendrimers; 3.1. Cayley-Tree-Type Dendrimers with TT-Conjugation; 3.2. Finite-Field Approach to Static (Hyper)polarizabilities; 3.3. Hyperpolarizability Density Analysis; 3.4. Size Dependencies of a and yof Oligomer Models for Dendron Parts; 3.5. Second Hyperpolarizabilities of Cayley-Tree-Type Phenylacetylene Dendrimers; 3.6. Summary; 4. Extensions of Models and Analysis
  • 4.1. Master Equation Approach Involving Explicit Exciton-Phonon Coupling4.2. Analytical Expression of Hyperpolarizability Density; 4.3. Summary; 5. Concluding Remarks; Acknowledgments; References; Part Two: Molecules in Intense Laser Fields: Nonlinear Multiphoton Spectroscopy and Near-Femtosecond To Sub-Femtosecond (Attosecond) Dynamics; Molecules In Intense Laser Fields: Nonlinear Multiphoton Spectroscopy And Near-Femtosecond To Sub-Femtosecond (Attosecond) Dynamics; 1 Introduction; 2 Numerical Methods; 3 Charge Resonance Enhanced Ionization and Quasistatic Models: One-Electron Systems
  • 4 Two-Electron Systems5 Adiabatic State Formalism; 6 Adiabatic State Population Analysis; 7 Transfer Matrix Formalism; 8 High-Frequency Limit; 9 Conclusion; Acknowledgments; References; Part Three: Ultrafast Dynamics and non-Markovian Processes in Four-Photon Spectroscopy; Ultrafast Dynamics and non-Markovian Processes in Four-Photon Spectroscopy; 1 Introduction; 2 Hamiltonian of chromofore molecule in solvent and basic methods of the resonance four-photon spectroscopy; 3 Calculation of nonlinear polarization; 4 Stochastic models in transient RFPS
  • 4.1 Non-Markovian relaxation effects in two-pulse RFPS with Gaussian random modulation of optical transition frequency4.2 Transient four-photon spectroscopy of near or overlapping resonances in the presence of spectral exchange; 4.3 Non-Markovian relaxation effects in three-pulse RFPS; 5 Non-Markovian theory of steady-state RFPS; 5.1 Introduction and the cubic susceptibility in the case of Gaussian-Markovian random modulation of an electronic transition; 5.2 Model for frequency modulation of electronic transition of complex molecule in solution