Quantum Invariants : a Study of Knots, 3-Manifolds, and Their Sets.

This book provides an extensive and self-contained presentation of quantum and related invariants of knots and 3-manifolds. Polynomial invariants of knots, such as the Jones and Alexander polynomials, are constructed as quantum invariants, i.e. invariants derived from representations of quantum grou...

Full description

Saved in:
Bibliographic Details
Main Author: Ohtsuki, Tomotada
Format: eBook
Language:English
Published: Singapore : World Scientific Publishing Company, 2001.
Series:K & E series on knots and everything.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 ocn879023732
003 OCoLC
005 20241006213017.0
006 m o d
007 cr |n|---|||||
008 140501s2001 si o 000 0 eng d
040 |a MHW  |b eng  |e pn  |c MHW  |d EBLCP  |d OCLCO  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d ICG  |d OCLCO  |d OCLCF  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
020 |a 9789812811172 
020 |a 9812811176 
035 |a (OCoLC)879023732 
050 4 |a QC174.52.C66  |b O35 2002 
049 |a HCDD 
100 1 |a Ohtsuki, Tomotada. 
245 1 0 |a Quantum Invariants :  |b a Study of Knots, 3-Manifolds, and Their Sets. 
260 |a Singapore :  |b World Scientific Publishing Company,  |c 2001. 
300 |a 1 online resource (508 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series on Knots and Everything 
588 0 |a Print version record. 
520 |a This book provides an extensive and self-contained presentation of quantum and related invariants of knots and 3-manifolds. Polynomial invariants of knots, such as the Jones and Alexander polynomials, are constructed as quantum invariants, i.e. invariants derived from representations of quantum groups and from the monodromy of solutions to the Knizhnik-Zamolodchikov equation. With the introduction of the Kontsevich invariant and the theory of Vassiliev invariants, the quantum invariants become well-organized. Quantum and perturbative invariants, the LMO invariant, and finite type invariants of. 
505 0 |a Preface ; Chapter 1 Knots and polynomial invariants ; 1.1 Knots and their diagrams ; 1.2 The Jones polynomial ; 1.3 The Alexander polynomial ; Chapter 2 Braids and representations of the braid groups ; 2.1 Braids and braid groups. 
505 8 |a 2.2 Representations of the braid groups via R matrices 2.3 Burau representation of the braid groups ; Chapter 3 Operator invariants of tangles via sliced diagrams ; 3.1 Tangles and their sliced diagrams ; 3.2 Operator invariants of unoriented tangles. 
505 8 |a 3.3 Operator invariants of oriented tangles Chapter 4 Ribbon Hopf algebras and invariants of links ; 4.1 Ribbon Hopf algebras ; 4.2 Invariants of links in ribbon Hopf algebras ; 4.3 Operator invariants of tangles derived from ribbon Hopf algebras. 
505 8 |a 4.4 The quantum group Uq(sl2) at a generic q 4.5 The quantum group Uc(sl2) at a root of unity C ; Chapter 5 Monodromy representations of the braid groups derived from the Knizhnik-Zamolodchikov equation ; 5.1 Representations of braid groups derived from the KZ equation. 
505 8 |a 5.2 Computing monodromies of the KZ equation 5.3 Combinatorial reconstruction of the monodromy representations ; 5.4 Quasi-triangular quasi-bialgebra ; 5.5 Relation to braid representations derived from the quantum group ; Chapter 6 The Kontsevich invariant ; 6.1 Jacobi diagrams. 
650 0 |a Quantum field theory. 
650 0 |a Knot theory. 
650 0 |a Three-manifolds (Topology) 
650 0 |a Invariants. 
650 0 |a Mathematical physics. 
650 7 |a Invariants  |2 fast 
650 7 |a Knot theory  |2 fast 
650 7 |a Mathematical physics  |2 fast 
650 7 |a Quantum field theory  |2 fast 
650 7 |a Three-manifolds (Topology)  |2 fast 
758 |i has work:  |a Quantum invariants (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGFRxdrqfbDYxTkPY9fVP3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9789810246754 
830 0 |a K & E series on knots and everything. 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=1679561  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD