Quantum electronics for atomic physics and telecommunication / Warren Nagourney.

Nagourney provides a course in quantum electronics for researchers in atomic physics and other related areas (including telecommunications). The book covers the usual topics, such as Gaussian beams, optical cavities, lasers, non-linear optics, modulation techniques and fibre optics, but also include...

Full description

Saved in:
Bibliographic Details
Main Author: Nagourney, Warren G. (Author)
Format: eBook
Language:English
Published: Oxford : Oxford University Press, 2014.
Edition:Second edition.
Series:Oxford graduate texts.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Gaussian beams
  • Optical resonators : geometrical properties
  • Energy relations in optical cavities
  • Optical cavity as frequency discriminator
  • Laser gain and some of its consequences
  • Laser oscillation and pumping mechanisms
  • Descriptions of specific CW laser systems
  • Laser gain in a semiconductor
  • Semiconductor diode lasers
  • Guided-wave devices and fiber lasers
  • Mode-locked lasers and frequency metrology
  • Laser frequency stabilization and control systems
  • Atomic and molecular discriminants
  • Nonlinear optics
  • Frequency and amplitude modulation.
  • Machine generated contents note: 1. Gaussian beams
  • 1.1. Introduction
  • 1.2. The paraxial wave equation
  • 1.3. Gaussian beam functions and the complex beam parameter, q
  • 1.4. Some Gaussian beam properties
  • 1.5. The phase term: Gouy phase
  • 1.6. Simple transformation properties of the complex beam parameter
  • 1.7. Matrix formulation of paraxial ray optics: ABCD rule
  • 1.8. Further reading
  • 1.9. Problems
  • 2. Optical resonators
  • geometrical properties
  • 2.1. Introduction
  • 2.2. The two-mirror standing-wave cavity
  • 2.3. Stability
  • 2.4. Solution for an arbitrary two-mirror stable cavity
  • 2.5. Higher-order modes
  • 2.6. Resonant frequencies
  • 2.7. The traveling-wave (ring) cavity
  • 2.8. Astigmatism in a ring cavity
  • 2.9. Mode matching
  • 2.10. Beam quality characterization: the M2 parameter
  • 2.11. Further reading
  • 2.12. Problems
  • 3. Energy relations in optical cavities
  • 3.1. Introduction
  • 3.2. Reflection and transmission at an interface.
  • Note continued: 3.3. Reflected fields from standing-wave cavity
  • 3.4. Internal (circulating) field in a standing-wave cavity
  • 3.5. Reflected and internal intensities
  • 3.6. The resonant character of the reflected and circulating intensities
  • 3.7. Impedance matching
  • 3.8. Fields and intensities in ring cavity
  • 3.9.A novel reflective coupling scheme using a tilted wedge
  • 3.10. Photon lifetime
  • 3.11. The quality factor, Q
  • 3.12. Relation between Q and finesse
  • 3.13. Alternative representation of cavity loss
  • 3.14. Experimental determination of cavity parameters
  • 3.15. Farther reading
  • 3.16. Problems
  • 4. Optical cavity as frequency discriminator
  • 4.1. Introduction
  • 4.2.A simple example
  • 4.3. Side of resonance discriminant
  • 4.4. The manipulation of polarized beams: the Jones calculus
  • 4.5. The polarization technique
  • 4.6. Frequency modulation
  • 4.7. The Pound
  • Drever
  • Hall approach
  • 4.8. Frequency response of a cavity-based discriminator.
  • Note continued: 4.9. Further reading
  • 4.10. Problems
  • 5. Laser gain and some of its consequences
  • 5.1. Introduction
  • 5.2. The wave equation
  • 5.3. The interaction term
  • 5.4. The rotating-wave approximation
  • 5.5. Density matrix of two-level system
  • 5.6. The classical Bloch equation
  • 5.7. Connection between two-level atom and spin-1/2 system
  • 5.8. Radiative and collision-induced damping
  • 5.9. The atomic susceptibility and optical gain
  • 5.10. The Einstein A and B coefficients
  • 5.11. Doppler broadening: an example of inhomogeneous broadening
  • 5.12.Comments on saturation
  • 5.13. Further reading
  • 5.14. Problems
  • 6. Laser oscillation and pumping mechanisms
  • 6.1. Introduction
  • 6.2. The condition for laser oscillation
  • 6.3. The power output of a laser
  • 6.4. Pumping in three-level and four-level laser systems
  • 6.5. Laser oscillation frequencies and pulling
  • 6.6. Inhomogeneous broadening and multimode behavior
  • 6.7. Spatial hole burning.
  • Note continued: 6.8. Some consequences of the photon model for laser radiation
  • 6.9. The photon statistics of laser radiation
  • 6.10. The ultimate linewidth of a laser
  • 6.11. Further reading
  • 6.12. Problems
  • 7. Descriptions of specific CW laser systems
  • 7.1. Introduction
  • 7.2. The He-Ne laser
  • 7.3. The argon-ion laser
  • 7.4. The continuous-wave organic dye laser
  • 7.5. The titanium
  • sapphire laser
  • 7.6. The CW neodymium
  • yttrium-aluminum
  • garnet (Nd:YAG) laser
  • 7.7. The YAG non-planar ring oscillator: a novel ring laser geometry
  • 7.8. Diode-pumped solid-state (DPSS) YAG lasers
  • 7.9. Further reading
  • 8. Laser gain in a semiconductor
  • 8.1. Introduction
  • 8.2. Solid-state physics background
  • 8.3. Optical gain in a semiconductor
  • 8.4. Further reading
  • 8.5. Problems
  • 9. Semiconductor diode lasers
  • 9.1. Introduction
  • 9.2. The homojunction semiconductor laser
  • 9.3. The double heterostructure laser
  • 9.4. Quantum-well lasers.
  • Note continued: 9.5. Distributed feedback lasers
  • 9.6. The rate equations and relaxation oscillations
  • 9.7. Diode laser frequency control and linewidth
  • 9.8. External cavity diode lasers (ECDLs)
  • 9.9. Semiconductor laser amplifiers and injection locking
  • 9.10. Miscellaneous characteristics of semiconductor lasers
  • 9.11. Further reading
  • 9.12. Problems
  • 10. Guided-wave devices and fiber lasers
  • 10.1. Introduction
  • 10.2. Slab waveguide: preliminary analysis
  • 10.3. Wave propagation in a slab waveguide
  • 10.4. Wave propagation in a fiber
  • ray theory
  • 10.5. Wave propagation in a fiber
  • wave theory
  • 10.6. Dispersion in fibers and waveguides
  • 10.7. Coupling into optical fibers
  • 10.8. Fiber-optic components
  • 10.8.1. Directional coupler
  • 10.8.2. The loop reflector
  • 10.8.3. Fiber Bragg gratings
  • 10.8.4. Optical isolators and circulators
  • 10.8.5. Amplitude and phase modulation
  • 10.8.6. Polarization-preserving fibers
  • 10.8.7. Polarization controller.
  • Note continued: 10.9. The physics of rare earth ions in glasses
  • 10.10. Some specific fiber lasers
  • 10.10.1. Fiber laser resonators
  • 10.10.2. Erbium and erbium/ytterbium lasers
  • 10.10.3. Neodymium lasers
  • 10.10.4. Ytterbium lasers
  • 10.10.5. Thulium lasers
  • 10.11. Further reading
  • 10.12. Problems
  • 11. Mode-locked lasers and frequency metrology
  • 11.1. Introduction
  • 11.2. Theory of mode locking
  • 11.3. Mode-locking techniques
  • 11.4. Dispersion and its compensation
  • 11.5. The mode-locked Ti-sapphire laser
  • 11.6. Mode-locked fiber lasers
  • 11.7. Frequency metrology using a femtosecond laser
  • 11.8. The carrier envelope offset
  • 11.9.Comb generation in a microresonator
  • 11.10. Further reading
  • 11.11. Problems
  • 12. Laser frequency stabilization and control systems
  • 12.1. Introduction
  • 12.2. Laser frequency stabilization
  • a first look
  • 12.3. The effect of the loop filter
  • 12.4. Elementary noise considerations
  • 12.5. Some linear system theory.
  • Note continued: 12.6. The stability of a linear system
  • 12.7. Negative feedback
  • 12.8. Some actual control systems
  • 12.9. Temperature stabilization
  • 12.10. Laser frequency stabilization
  • 12.11. Optical-fiber phase noise and its cancellation
  • 12.12. Characterization of laser frequency stability
  • 12.13. Frequency locking to a noisy resonance
  • 12.14. Further reading
  • 12.15. Problems
  • 13. Atomic and molecular discriminants
  • 13.1. Introduction
  • 13.2. Sub-Doppler saturation spectroscopy
  • 13.3. Sub-Doppler dichroic atomic vapor laser locking and polarization spectroscopy
  • 13.4. An example of a side-of-line atomic discriminant
  • 13.5. Further reading
  • 13.6. Problems
  • 14. Nonlinear optics
  • 14.1. Introduction
  • 14.2. Anisotropic crystals
  • 14.3. Second-harmonic generation
  • 14.4. Birefringent phase matching
  • 14.5. Quasi-phase matching
  • 14.6. Second-harmonic generation using a focused beam
  • 14.7. Second-harmonic generation in a cavity.
  • Note continued: 14.8. Sum-frequency generation
  • 14.9. Periodically poled optical waveguides
  • 14.10. Parametric interactions
  • 14.11. Further reading
  • 14.12. Problems
  • 15. Frequency and amplitude modulation
  • 15.1. Introduction
  • 15.2. The linear electro-optic effect
  • 15.3. Bulk electro-optic modulators
  • 15.4. Traveling-wave electro-optic modulators
  • 15.5. Acousto-optic modulators
  • 15.6. Further reading
  • 15.7. Problems.