Finite groups whose 2-subgroups are generated by at most 4 elements / Daniel Gorenstein and Koichiro Harada.

Saved in:
Bibliographic Details
Main Authors: Gorenstein, Daniel (Author), Harada, Koichiro, 1941- (Author)
Format: eBook
Language:English
Published: Providence : American Mathematical Society, 1974.
Series:Memoirs of the American Mathematical Society ; no. 147.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 ocn884584175
003 OCoLC
005 20241006213017.0
006 m o d
007 cr cn|||||||||
008 740612s1974 riu ob 000 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d EBLCP  |d OCLCF  |d OCLCQ  |d AU@  |d OCLCQ  |d VT2  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d SXB  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |a 9780821899472  |q (e-book) 
020 |a 0821899473  |q (e-book) 
020 |z 0821818473 
020 |z 9780821818473 
035 |a (OCoLC)884584175 
050 4 |a QA177  |b .G67 1974eb 
049 |a HCDD 
100 1 |a Gorenstein, Daniel,  |e author. 
245 1 0 |a Finite groups whose 2-subgroups are generated by at most 4 elements /  |c Daniel Gorenstein and Koichiro Harada. 
264 1 |a Providence :  |b American Mathematical Society,  |c 1974. 
300 |a 1 online resource (473 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society ;  |v number 147 
504 |a Includes bibliographical references (pages 461-464). 
588 0 |a Print version record. 
505 0 |a TABLE OF CONTENTS -- INTRODUCTION -- PART I: SOLVABLE 2-LOCAL SUBGROUPS -- 1. Introduction -- 2. The minimal counterexample -- 3. Odd order groups acting on 2-groups -- 4. The local subgroups of G -- 5. The structure of O[sub(2)(M) -- 6. The case C[sub(R)](B) / 1 -- 7. Proof of Theorem A -- PART II: 2-CONSTRAINED 2-LOCAL SUBGROUPS -- 1. Introduction -- 2. The automorphism groups of certain 2-groups -- 3. Theorem B, the GL(3,2) case -- 4. Theorem B, the A[sub(5)]case -- 5. Theorems C and D, initial reduction -- 6. Theorems C and D, the A[sub(5)] case -- 7. Theorems C and D, the GL(3,2) case. 
505 8 |a PART III: NON 2-CONSTRAINED CENTRALIZERS OF INVOLUTIONS -- SOME SPECIAL CASES -- 1. Introduction -- 2. Theorem A -- 3. The Ŝz(8) case -- 4. The Â[sub(n) case -- 5. The M[sub(l2)] case -- 6. Some lemmas -- 7. The SL(4,q), SU(4,q), Sp(4,q) cases -- 8. The direct product case -- 9. The central product case -- PART IV: A CHARACTERIZATION OF THE GROUP D[sup(2)sub(4)](3) -- 1. Introduction -- 2. Preliminary lemmas -- 3. The centralizer of a central involution -- 4. The intersection of W and its conjugates -- 5. The normal four subgroup case -- 6. The cyclic case -- 7. The maximal class case. 
505 8 |a PART V: CENTRAL INVOLUTIONS WITH NON 2-CONSTRAINED CENTRALIZERS -- 1. Introduction -- 2. Initial reductions -- 3. Theorem A -- the wreathed case -- 4. Preliminary results -- 5. Maximal elementary abelian 2-subgroups -- 6. Fusion of involutions -- 7. Theorem A -- the dihedral and quasi-dihedral cases -- PART VI: A CHARACTERIZATION OF THE GROUP M[sub(12)] -- 1. Introduction -- 2. 2-groups and their automorphism groups -- 3. Some 2-groups associated with Aut(Z[sub(4)] x Z[sub(4)]) -- 4. Initial reductions -- 5. Elimination of the rank 3 case -- 6. The major reduction -- 7. The non-dihedral case. 
505 8 |a 8. The noncyclic case -- 9. The structure of O[sub(2)](M) -- 10. The structure of S. 
650 0 |a Finite groups. 
650 7 |a Finite groups  |2 fast 
700 1 |a Harada, Koichiro,  |d 1941-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJxCtCPBQPfj8MBQt8kMT3 
776 0 8 |i Print version:  |a Gorenstein, Daniel.  |t Finite groups whose 2-subgroups are generated by at most 4 elements.  |d Providence : American Mathematical Society, 1974  |h vii, 464 ; 26 cm  |k Memoirs of the American Mathematical Society ; no. 147  |z 9780821818473  |w (DLC) 10882148 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 147. 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=3113489  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD