Improving Production with Lean Thinking.

Unique coverage of manufacturing management techniques--complete with cases and real-world examples. Improving Production with Lean Thinking picks up where other references on production processes leave off. It is increasingly important to integrate and systematize lean thinking throughout productio...

Full description

Saved in:
Bibliographic Details
Main Author: Santos, Javier
Other Authors: Wysk, Richard A., Torres, Jose M.
Format: eBook
Language:English
Published: Hoboken : Wiley, 2014.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Cover; Title Page; Copyright; Contents; Preface; 1. Continuous Improvement Tools; Continuous Improvement; Improvement Philosophies and Methodologies; Just-in-Time (JIT); Thinking Revolution; Lean Manufacturing; 20 Keys to Workplace Improvement; Measuring and Prioritizing the Improvements; Book Structure; Recommended Readings; 2. Material Flow and Facilities Layout; Layout Improvements; Signs and Reasons for a Need to Change the Layout; Theoretical Basis; One-Piece Flow; Main Types of Industrial Companies; Layout Types; Characteristic of the Traditional Layouts; Layout Design Methodology.
  • Step 1: Formulate the ProblemStep 2: Analysis of the Problem; Step 3: Search for Alternatives; Step 4: Choose the Right Solution; Step 5: Specification of the Solution; Step 6: Design Cycle; Tools for Layout Study; Muther's Eight Factors; Summary; Recommended Readings; 3. Material Flow and the Design of Cellular Layouts; The Assembly Line; Theoretical Basis; Mass Production; Flow or Assembly Lines; Cell Layout Design Justification; Basic Cell Design Nomenclature; Cell Design Methodology; Cell Design Tools; Line-Balancing; Group Technology; Time Study; Leveling Production.
  • Multifunctional WorkersWorkforce Optimization; Summary; Recommended Readings; 4. Equipment Efficiency: Quality and Poka-Yoke; Poka-Yokes; Theoretical Basis; Inspection and Statistical Quality Control (SQC); From SQC to Zero Defects; Poka-Yoke Design Methodology; Poka-Yoke Examples; Summary; Recommended Readings; 5. Equipment Efficiency: Performance and Motion Study; Motion Study; Theoretical Basis; Motion Economy Principles; Motion Study Tools; Value Analysis; 5W2H and 5-Why Methods; Worker-Machine Diagram; Machine-Worker Ratio; Machine-Machine Diagram; Summary; Recommended Readings.
  • 6. Equipment Efficiency: Availability, Performance, and MaintenanceEquipment Maintenance; Theoretical Basis; Types of Maintenance; Maintenance Program Implementation; Getting Started; Corrective Maintenance Implementation; Preventive Maintenance Implementation; Autonomous Maintenance; TPM: Total Productive Maintenance; RCM: Reliability-Centered Maintenance; Maintenance Tools; FMEA for Equipment; Reliability; P-M Analysis; Maintenance Management; Summary; Recommended Readings; 7. Equipment Efficiency: Availability, Quality, and SMED; Setup Process; Theoretical Basis.
  • Basic Steps in a Setup ProcessTraditional Strategies to Improve the Setup Process; SMED Methodology; Preliminary Stage; Stage 1: Separating Internal and External Setup; Stage 2: Converting Internal Setup to External Setup; Stage 3: Streamlining All Aspects of the Setup Process; SMED Tools; First-Stage Tools; Second-Stage Tools; Third-Stage Tools; Zero Changeover; SMED Effects and Benefits; Easier Setup Process; On-Hand Stock Production; Workplace Task Simplification; Productivity and Flexibility; Economic Benefits; Summary; Recommended Readings.