Skip to content
Library Home
Start Over
Research Databases
E-Journals
Course Reserves
Library Home
Login to library account
English
Deutsch
Español
Français
Italiano
日本語
Nederlands
Português
Português (Brasil)
中文(简体)
中文(繁體)
Türkçe
עברית
Gaeilge
Cymraeg
Ελληνικά
Català
Euskara
Русский
Čeština
Suomi
Svenska
polski
Dansk
slovenščina
اللغة العربية
বাংলা
Galego
Tiếng Việt
Hrvatski
हिंदी
Հայերէն
Українська
Language
Library Catalog
All Fields
Title
Author
Subject
Call Number
ISBN/ISSN
Find
Advanced Search
|
Browse
|
Search Tips
Harmonic analysis for anisotro...
Cite this
Text this
Email this
Print
Export Record
Export to RefWorks
Export to EndNoteWeb
Export to EndNote
Save to List
Permanent link
Harmonic analysis for anisotropic random walks on homogeneous trees / Alessandro Figà-Talamanca, Tim Steger.
Saved in:
Bibliographic Details
Main Authors:
Figà-Talamanca, Alessandro, 1938-
(Author)
,
Steger, Tim, 1957-
(Author)
Format:
eBook
Language:
English
Published:
Providence, Rhode Island :
American Mathematical Society,
1994.
Series:
Memoirs of the American Mathematical Society ;
Volume 100, no. 531.
Subjects:
Locally compact groups.
Representations of groups.
Random walks (Mathematics)
Trees (Graph theory)
Locally compact groups
Representations of groups
Online Access:
Click for online access
Holdings
Description
Table of Contents
Similar Items
Staff View
Table of Contents:
Contents
List of Figures
Index of Notation
Abstract
Chapter 0. Introduction
Chapter 1. The Green Function
1. Random Walks on a Tree
2. The Method of Paths
3. The Nearest Neighbor Case
4. The Case of a Finitely Supported Measure
5. Algebraicity of the Green Function
6. Notes and Remarks
Chapter 2. The Spectrum and the Plancherel Measure
1. The Spectrum of the Random Walk in l[sup(r)]{G)
2. The l[sup(2)]-spectrum and the Real l[sup(1)]-spectrum
3. The Plancherel Formula
4. Notes and Remarks
Chapter 3. Representations and their Realization on the Boundary1. Boundary Theory for Eigenfunctions of the Random Walk
2. The Principal Series
3. The Complementary Series
4. Notes and Remarks
Chapter 4. Irreducibility and Inequivalence
1. Irreducibility
2. Inequivalence
3. Notes and Remarks
References
Similar Items
Harmonic analysis for anisotropic random walks on homogeneous trees
by: Figà-Talamanca, Alessandro, 1938-
Published: (1994)
Random walks on infinite graphs and groups
by: Woess, Wolfgang, 1954-
Published: (2000)
Integral operators in the theory of induced Banach representations
by: Schochetman, Irwin E., 1939-
Published: (1978)
Induced representations of locally compact groups
by: Kaniuth, Eberhard
Published: (2013)
Periodic locally compact groups : a study of a class of totally disconnected topological groups
by: Herfort, Wolfgang, et al.
Published: (2019)