|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
ocn891384107 |
003 |
OCoLC |
005 |
20241006213017.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
140903t19951995riua ob 000 0 eng d |
040 |
|
|
|a E7B
|b eng
|e rda
|e pn
|c E7B
|d OCLCO
|d EBLCP
|d OCLCQ
|d OCLCF
|d OCLCQ
|d OCLCO
|d OCLCQ
|d QGK
|d K6U
|d OCLCO
|d TXI
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|d SXB
|d OCLCQ
|
019 |
|
|
|a 1259156719
|a 1328343830
|a 1398087345
|
020 |
|
|
|a 9781470401337
|q (e-book)
|
020 |
|
|
|a 1470401339
|q (e-book)
|
020 |
|
|
|z 9780821802342
|
035 |
|
|
|a (OCoLC)891384107
|z (OCoLC)1259156719
|z (OCoLC)1328343830
|z (OCoLC)1398087345
|
050 |
|
4 |
|a QA564
|b .B458 1995eb
|
049 |
|
|
|a HCDD
|
100 |
1 |
|
|a Beltrametti, Mauro,
|d 1948-
|1 https://id.oclc.org/worldcat/entity/E39PCjrYvR6xv3JqKYHYWxpRYX
|
245 |
1 |
0 |
|a Some special properties of the adjunction theory for 3-folds in [double-struck capital]P⁵ /
|c Mauro C. Beltrametti, Michael Schneider, [and] Andrew J. Sommese.
|
264 |
|
1 |
|a Providence, RI :
|b American Mathematical Society,
|c [1995]
|
264 |
|
4 |
|c ©1995
|
300 |
|
|
|a 1 online resource (viii, 79 pages) :
|b illustrations, tables
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v Volume 116, Number 554
|
500 |
|
|
|a On title page "P" ([double-struck capital]P) is the symbol for n-dimensional space
|
500 |
|
|
|a "July 1995, volume 116, number 554 (first of 4 numbers)."
|
504 |
|
|
|a Includes bibliographical references (pages 61-63).
|
505 |
0 |
0 |
|t Introduction --
|t Background material --
|t The second reduction for [italic]n-folds in [double-struck capital]P²[superscript italic]n⁻¹ --
|t General formulae for threefolds in [double-struck capital]P⁵ --
|t Nefness and bigness of [italic capital]K[subscript italic capital]X + 2[script capital]K --
|t Ampleness of [italic capital]K[subscript italic capital]X + 2[script capital]K --
|t Nefness and bigness of [italic capital]K[subscript italic capital]X + [script capital]K --
|t Invariants for threefolds in [double-struck capital]P⁵ up to degree 12.
|
520 |
|
|
|a This paper studies the adjunction theory of smooth 3-folds in [double-struck capital]P⁵. Because of the many special restriction on such 3-folds the structure of the adjunction theoretic reductions are especially simple, e.g., the 3-fold equals its first reduction, the second reduction is smooth except possibly for a few explicit low degrees, and the formulae relating the projective invariants of the given 3-fold with the invariants of its second reduction are very explicit. Tables summarizing the classification of such 3-folds up degree 12 are included.
|
588 |
0 |
|
|a Print version record.
|
546 |
|
|
|a English.
|
650 |
|
0 |
|a Adjunction theory.
|
650 |
|
0 |
|a Threefolds (Algebraic geometry)
|
650 |
|
7 |
|a Adjunction theory
|2 fast
|
650 |
|
7 |
|a Threefolds (Algebraic geometry)
|2 fast
|
700 |
1 |
|
|a Schneider, Michael,
|d 1942 May 18-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PBJcR9Cm4938Wr3vHMB6R8C
|
700 |
1 |
|
|a Sommese, Andrew John.,
|e author.
|
758 |
|
|
|i has work:
|a Some special properties of the adjunction theory for 3-folds in P⁵ (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGqW3JxVtmkQyfdtf3wHmd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Beltrametti, Mauro, 1948-
|t Some special properties of the adjunction theory for 3-folds in P⁵.
|d Providence, Rhode Island : American Mathematical Society, ©1995
|h viii, 63 pages
|k Memoirs of the American Mathematical Society ; Volume 116, Number 554
|x 0065-9266
|z 9780821802342
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v Volume 116, no. 554.
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=3113810
|y Click for online access
|
903 |
|
|
|a EBC-AC
|
994 |
|
|
|a 92
|b HCD
|