Welding Metallurgy and Weldability.

Describes the weldability aspects of structural materials used in a wide variety of engineering structures, including steels, stainless steels, Ni-base alloys, and Al-base alloys Welding Metallurgy and Weldability describes weld failure mechanisms associated with either fabrication or service, and f...

Full description

Saved in:
Bibliographic Details
Main Author: Lippold, John C.
Format: eBook
Language:English
Published: Wiley, 2014.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Welding Metallurgy and Weldability
  • Copyright
  • Contents
  • Preface
  • Author Biography
  • Chapter 1 Introduction
  • 1.1 Fabrication-Related Defects
  • 1.2 Service-Related Defects
  • 1.3 Defect Prevention and Control
  • References
  • Chapter 2 Welding Metallurgy Principles
  • 2.1 Introduction
  • 2.2 Regions of a Fusion Weld
  • 2.3 Fusion Zone
  • 2.3.1 Solidification of Metals
  • 2.3.1.1 Solidification Parameters
  • 2.3.1.2 Solidification Nucleation
  • 2.3.1.3 Solidification Modes
  • 2.3.1.4 Interface Stability
  • 2.3.2 Macroscopic Aspects of Weld Solidification
  • 2.3.2.1 Effect of Travel Speed and Temperature Gradient
  • 2.3.3 Microscopic Aspects of Weld Solidification
  • 2.3.3.1 Solidification Subgrain Boundaries (SSGB)
  • 2.3.3.2 Solidification Grain Boundaries (SGB)
  • 2.3.3.3 Migrated Grain Boundaries (MGB)
  • 2.3.4 Solute Redistribution
  • 2.3.4.1 Macroscopic Solidification
  • 2.3.4.2 Microscopic Solidification
  • 2.3.5 Examples of Fusion Zone Microstructures
  • 2.3.6 Transition Zone (TZ)
  • 2.4 Unmixed Zone (UMZ)
  • 2.5 Partially Melted Zone (PMZ)
  • 2.5.1 Penetration Mechanism
  • 2.5.2 Segregation Mechanism
  • 2.5.2.1 Gibbsian Segregation
  • 2.5.2.2 Grain Boundary Sweeping
  • 2.5.2.3 Pipeline Diffusion
  • 2.5.2.4 Grain Boundary Wetting
  • 2.5.3 Examples of PMZ formation
  • 2.6 Heat Affected Zone (HAZ)
  • 2.6.1 Recrystallization and Grain Growth
  • 2.6.2 Allotropic Phase Transformations
  • 2.6.3 Precipitation Reactions
  • 2.6.4 Examples of HAZ Microstructure
  • 2.7 Solid-State Welding
  • 2.7.1 Friction Stir Welding
  • 2.7.2 Diffusion Welding
  • 2.7.3 Explosion Welding
  • 2.7.4 Ultrasonic Welding
  • References
  • Chapter 3 Hot Cracking
  • 3.1 Introduction
  • 3.2 Weld Solidification Cracking
  • 3.2.1 Theories of Weld Solidification Cracking
  • 3.2.1.1 Shrinkage-Brittleness Theory
  • 3.2.1.2 Strain Theory
  • 3.2.1.3 Generalized Theory.
  • 3.2.1.4 Modified Generalized Theory
  • 3.2.1.5 Technological Strength Theory
  • 3.2.1.6 Commentary on Solidification Cracking Theories
  • 3.2.2 Predictions of Elemental Effects
  • 3.2.3 The BTR and Solidification Cracking Temperature Range
  • 3.2.4 Factors that Influence Weld Solidification Cracking
  • 3.2.4.1 Composition Control
  • 3.2.4.2 Grain Boundary Liquid Films
  • 3.2.4.3 Effect of Restraint
  • 3.2.5 Identifying Weld Solidification Cracking
  • 3.2.6 Preventing Weld Solidification Cracking
  • 3.3 Liquation Cracking
  • 3.3.1 HAZ Liquation Cracking
  • 3.3.2 Weld Metal Liquation Cracking
  • 3.3.3 Variables that Influence Susceptibility to Liquation Cracking
  • 3.3.3.1 Composition
  • 3.3.3.2 Grain Size
  • 3.3.3.3 Base Metal Heat Treatment
  • 3.3.3.4 Weld Heat Input and Filler Metal Selection
  • 3.3.4 Identifying HAZ and Weld Metal Liquation Cracks
  • 3.3.5 Preventing Liquation Cracking
  • References
  • Chapter 4 Solid-State Cracking
  • 4.1 Introduction
  • 4.2 Ductility-Dip Cracking
  • 4.2.1 Proposed Mechanisms
  • 4.2.2 Summary of Factors That Influence DDC
  • 4.2.3 Quantifying Ductility-Dip Cracking
  • 4.2.4 Identifying Ductility-Dip Cracks
  • 4.2.5 Preventing DDC
  • 4.3 Reheat Cracking
  • 4.3.1 Reheat Cracking in Low-Alloy Steels
  • 4.3.2 Reheat Cracking in Stainless Steels
  • 4.3.3 Underclad Cracking
  • 4.3.4 Relaxation Cracking
  • 4.3.5 Identifying Reheat Cracking
  • 4.3.6 Quantifying Reheat Cracking Susceptibility
  • 4.3.7 Preventing Reheat Cracking
  • 4.4 Strain-Age Cracking
  • 4.4.1 Mechanism for Strain-age Cracking
  • 4.4.2 Factors That Influence SAC Susceptibility
  • 4.4.2.1 Composition
  • 4.4.2.2 Grain Size
  • 4.4.2.3 Residual Stress and Restraint
  • 4.4.2.4 Welding Procedure
  • 4.4.2.5 Effect of PWHT
  • 4.4.3 Quantifying Susceptibility to Strain-age Cracking
  • 4.4.4 Identifying Strain-age Cracking
  • 4.4.5 Preventing Strain-age Cracking.
  • 4.5 Lamellar Cracking
  • 4.5.1 Mechanism of Lamellar Cracking
  • 4.5.2 Quantifying Lamellar Cracking
  • 4.5.3 Identifying Lamellar Cracking
  • 4.5.4 Preventing Lamellar Cracking
  • 4.6 Copper Contamination Cracking
  • 4.6.1 Mechanism for Copper Contamination Cracking
  • 4.6.2 Quantifying Copper Contamination Cracking
  • 4.6.3 Identifying Copper Contamination Cracking
  • 4.6.4 Preventing Copper Contamination Cracking
  • References
  • Chapter 5 Hydrogen-Induced Cracking
  • 5.1 Introduction
  • 5.2 Hydrogen Embrittlement Theories
  • 5.2.1 Planar Pressure Theory
  • 5.2.2 Surface Adsorption Theory
  • 5.2.3 Decohesion Theory
  • 5.2.4 Hydrogen-Enhanced Localized Plasticity Theory
  • 5.2.5 Beachem's Stress Intensity Model
  • 5.3 Factors That Influence HIC
  • 5.3.1 Hydrogen in Welds
  • 5.3.2 Effect of Microstructure
  • 5.3.3 Restraint
  • 5.3.4 Temperature
  • 5.4 Quantifying Susceptibility to HIC
  • 5.4.1 Jominy End Quench Method
  • 5.4.2 Controlled Thermal Severity Test
  • 5.4.3 The Y-Groove (Tekken) Test
  • 5.4.4 Gapped Bead-on-Plate Test
  • 5.4.5 The Implant Test
  • 5.4.6 Tensile Restraint Cracking Test
  • 5.4.7 Augmented Strain Cracking Test
  • 5.5 Identifying HIC
  • 5.6 Preventing HIC
  • 5.6.1 CE Method
  • 5.6.2 AWS Method
  • References
  • Chapter 6 Corrosion
  • 6.1 Introduction
  • 6.2 Forms of Corrosion
  • 6.2.1 General Corrosion
  • 6.2.2 Galvanic Corrosion
  • 6.2.3 Crevice Corrosion
  • 6.2.4 Selective Leaching
  • 6.2.5 Erosion Corrosion
  • 6.2.6 Pitting
  • 6.2.7 Intergranular Corrosion
  • 6.2.7.1 Preventing Sensitization
  • 6.2.7.2 Knifeline Attack
  • 6.2.7.3 Low-Temperature Sensitization
  • 6.2.8 Stress Corrosion Cracking
  • 6.2.9 Microbiologically Induced Corrosion
  • 6.3 Corrosion Testing
  • 6.3.1 Atmospheric Corrosion Tests
  • 6.3.2 Immersion Tests
  • 6.3.3 Electrochemical Tests
  • References
  • Chapter 7 Fracture and Fatigue
  • 7.1 Introduction.
  • 7.2 Fracture
  • 7.3 Quantifying Fracture Toughness
  • 7.4 Fatigue
  • 7.5 Quantifying Fatigue Behavior
  • 7.6 Identifying Fatigue Cracking
  • 7.6.1 Beach Marks
  • 7.6.2 River Lines
  • 7.6.3 Fatigue Striations
  • 7.7 Avoiding Fatigue Failures
  • References
  • Chapter 8 Failure Analysis
  • 8.1 Introduction
  • 8.2 Fractography
  • 8.2.1 History of Fractography
  • 8.2.2 The SEM
  • 8.2.3 Fracture Modes
  • 8.2.4 Fractography of Weld Failures
  • 8.2.4.1 Solidification Cracking
  • 8.2.4.2 Liquation Cracking
  • 8.2.4.3 Ductility-Dip Cracking
  • 8.2.4.4 Reheat Cracking
  • 8.2.4.5 Strain-Age Cracking
  • 8.2.4.6 Hydrogen-Induced Cracking
  • 8.3 An Engineer's Guide to Failure Analysis
  • 8.3.1 Site Visit
  • 8.3.2 Collect Background Information
  • 8.3.3 Sample Removal and Testing Protocol
  • 8.3.4 Sample Removal, Cleaning, and Storage
  • 8.3.5 Chemical Analysis
  • 8.3.6 Macroscopic Analysis
  • 8.3.7 Selection of Samples for Microscopic Analysis
  • 8.3.8 Selection of Analytical Techniques
  • 8.3.9 Mechanical Testing
  • 8.3.10 Simulative Testing
  • 8.3.11 Nondestructive Evaluation Techniques
  • 8.3.12 Structural Integrity Assessment
  • 8.3.13 Consultation with Experts
  • 8.3.14 Final Reporting
  • 8.3.15 Expert Testimony in Support of Litigation
  • References
  • Chapter 9 Weldability Testing
  • 9.1 Introduction
  • 9.2 Types of Weldability Test Techniques
  • 9.3 The Varestraint Test
  • 9.3.1 Technique for Quantifying Weld Solidification Cracking
  • 9.3.2 Technique for Quantifying HAZ Liquation Cracking
  • 9.4 The Cast Pin Tear Test
  • 9.5 The Hot Ductility Test
  • 9.6 The Strain-to-Fracture Test
  • 9.7 Reheat Cracking Test
  • 9.8 Implant Test for HAZ Hydrogen-Induced Cracking
  • 9.9 Gapped Bead-on-Plate Test for Weld Metal HIC
  • 9.10 Other Weldability Tests
  • References
  • Appendix A Composition of Selected Steels
  • Appendix B Nominal Composition ofStainless Steels.
  • Appendix C Composition of Nickel-Base Alloys
  • Appendix D Etching Techniques
  • A4.1 Steels
  • A4.2 Stainless Steels
  • A4.3 Nickel-Base Alloys
  • A4.4 Fracture Surface Cleaning
  • References
  • Index
  • End User License Agreement.