Analytic hyperbolic geometry in N dimensions : an introduction / Abraham A. Ungar.

The concept of the Euclidean simplex is important in the study of n-dimensional Euclidean geometry. This book introduces for the first time the concept of hyperbolic simplex as an important concept in n-dimensional hyperbolic geometry. Following the emergence of his gyroalgebra in 1988, the author c...

Full description

Saved in:
Bibliographic Details
Main Author: Ungar, Abraham A. (Author)
Format: eBook
Language:English
Published: Boca Raton, FL : CRC Press, [2014]
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 ocn897069447
003 OCoLC
005 20241006213017.0
006 m o d
007 cr cnu---unuuu
008 141129t20142015flua ob 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d N$T  |d YDXCP  |d CUS  |d OCLCF  |d DEBSZ  |d CDX  |d OCLCQ  |d MERUC  |d OCLCQ  |d UKMGB  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d TMA  |d OCLCQ  |d SXB 
015 |a GBB4D8546  |2 bnb 
016 7 |a 016966030  |2 Uk 
019 |a 900004462 
020 |a 9781482236682  |q (electronic bk.) 
020 |a 1482236680  |q (electronic bk.) 
020 |z 1482236672 
020 |z 9781482236675 
035 |a (OCoLC)897069447  |z (OCoLC)900004462 
037 |a TANDF_361394  |b Ingram Content Group 
050 4 |a QA685 .U536 2015 
072 7 |a MAT  |x 012000  |2 bisacsh 
049 |a HCDD 
100 1 |a Ungar, Abraham A.,  |e author. 
245 1 0 |a Analytic hyperbolic geometry in N dimensions :  |b an introduction /  |c Abraham A. Ungar. 
264 1 |a Boca Raton, FL :  |b CRC Press,  |c [2014] 
264 4 |c ©2015 
300 |a 1 online resource (xix, 601 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
505 0 |a Front Cover; Preface; Contents; List of Figures; Author's Biography; 1. Introduction; Part I: Einstein Gyrogroups and Gyrovector Spaces; 2. Einstein Gyrogroups; 3. Einstein Gyrovector Spaces ; 4. Relativistic Mass Meets Hyperbolic Geometry; Part II: Mathematical Tools for Hyperbolic Geometry; 5. Barycentric and Gyrobarycentric Coordinates; 6. Gyroparallelograms and Gyroparallelotopes; 7. Gyrotrigonometry; Part III: Hyperbolic Triangles and Circles; 8. Gyrotriangles and Gyrocircles; 9. Gyrocircle Theorems; Part IV: Hyperbolic Simplices, Hyperplanes and Hyperspheres in N Dimensions. 10. Gyrosimplex Gyrogeometry11. Gyrotetrahedron Gyrogeometry; Part V: Hyperbolic Ellipses and Hyperbolas; 12. Gyroellipses and Gyrohyperbolas ; Part VI: Thomas Precession; 13. Thomas Precession; Notations and Special Symbols; Bibliography. 
520 |a The concept of the Euclidean simplex is important in the study of n-dimensional Euclidean geometry. This book introduces for the first time the concept of hyperbolic simplex as an important concept in n-dimensional hyperbolic geometry. Following the emergence of his gyroalgebra in 1988, the author crafted gyrolanguage, the algebraic language that sheds natural light on hyperbolic geometry and special relativity. Several authors have successfully employed the author's gyroalgebra in their exploration for novel results. Françoise Chatelin noted in her book, and elsewhere, that the computation la. 
650 0 |a Geometry, Hyperbolic. 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Geometry, Hyperbolic  |2 fast 
758 |i has work:  |a Analytic hyperbolic geometry in N dimensions (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCG3pygmwY3JRPTFw3vKR4y  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Ungar, Abraham Albert.  |t Analytic Hyperbolic Geometry in N Dimensions : An Introduction.  |d Hoboken : Taylor and Francis, ©2014  |z 9781482236675 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=1659311  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD