|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
ocn897069447 |
003 |
OCoLC |
005 |
20241006213017.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
141129t20142015flua ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e rda
|e pn
|c EBLCP
|d N$T
|d YDXCP
|d CUS
|d OCLCF
|d DEBSZ
|d CDX
|d OCLCQ
|d MERUC
|d OCLCQ
|d UKMGB
|d OCLCQ
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|d TMA
|d OCLCQ
|d SXB
|
015 |
|
|
|a GBB4D8546
|2 bnb
|
016 |
7 |
|
|a 016966030
|2 Uk
|
019 |
|
|
|a 900004462
|
020 |
|
|
|a 9781482236682
|q (electronic bk.)
|
020 |
|
|
|a 1482236680
|q (electronic bk.)
|
020 |
|
|
|z 1482236672
|
020 |
|
|
|z 9781482236675
|
035 |
|
|
|a (OCoLC)897069447
|z (OCoLC)900004462
|
037 |
|
|
|a TANDF_361394
|b Ingram Content Group
|
050 |
|
4 |
|a QA685 .U536 2015
|
072 |
|
7 |
|a MAT
|x 012000
|2 bisacsh
|
049 |
|
|
|a HCDD
|
100 |
1 |
|
|a Ungar, Abraham A.,
|e author.
|
245 |
1 |
0 |
|a Analytic hyperbolic geometry in N dimensions :
|b an introduction /
|c Abraham A. Ungar.
|
264 |
|
1 |
|a Boca Raton, FL :
|b CRC Press,
|c [2014]
|
264 |
|
4 |
|c ©2015
|
300 |
|
|
|a 1 online resource (xix, 601 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Front Cover; Preface; Contents; List of Figures; Author's Biography; 1. Introduction; Part I: Einstein Gyrogroups and Gyrovector Spaces; 2. Einstein Gyrogroups; 3. Einstein Gyrovector Spaces ; 4. Relativistic Mass Meets Hyperbolic Geometry; Part II: Mathematical Tools for Hyperbolic Geometry; 5. Barycentric and Gyrobarycentric Coordinates; 6. Gyroparallelograms and Gyroparallelotopes; 7. Gyrotrigonometry; Part III: Hyperbolic Triangles and Circles; 8. Gyrotriangles and Gyrocircles; 9. Gyrocircle Theorems; Part IV: Hyperbolic Simplices, Hyperplanes and Hyperspheres in N Dimensions. 10. Gyrosimplex Gyrogeometry11. Gyrotetrahedron Gyrogeometry; Part V: Hyperbolic Ellipses and Hyperbolas; 12. Gyroellipses and Gyrohyperbolas ; Part VI: Thomas Precession; 13. Thomas Precession; Notations and Special Symbols; Bibliography.
|
520 |
|
|
|a The concept of the Euclidean simplex is important in the study of n-dimensional Euclidean geometry. This book introduces for the first time the concept of hyperbolic simplex as an important concept in n-dimensional hyperbolic geometry. Following the emergence of his gyroalgebra in 1988, the author crafted gyrolanguage, the algebraic language that sheds natural light on hyperbolic geometry and special relativity. Several authors have successfully employed the author's gyroalgebra in their exploration for novel results. Françoise Chatelin noted in her book, and elsewhere, that the computation la.
|
650 |
|
0 |
|a Geometry, Hyperbolic.
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Geometry, Hyperbolic
|2 fast
|
758 |
|
|
|i has work:
|a Analytic hyperbolic geometry in N dimensions (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCG3pygmwY3JRPTFw3vKR4y
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Ungar, Abraham Albert.
|t Analytic Hyperbolic Geometry in N Dimensions : An Introduction.
|d Hoboken : Taylor and Francis, ©2014
|z 9781482236675
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=1659311
|y Click for online access
|
903 |
|
|
|a EBC-AC
|
994 |
|
|
|a 92
|b HCD
|