Differential Quadrature and Differential Quadrature Based Element Methods : Theory and Applications / Xinwei Wang.

Saved in:
Bibliographic Details
Main Author: Wang, Xinwei (Author)
Format: eBook
Language:English
Published: Oxford, UK : Butterworth-Heinemann, [2015]
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 ocn905649782
003 OCoLC
005 20240504213016.0
006 m o d
007 cr cnu|||unuuu
008 150326s2015 enk ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d OPELS  |d E7B  |d YDXCP  |d IDEBK  |d OCLCF  |d EBLCP  |d CDX  |d COO  |d IDB  |d OCLCQ  |d MERUC  |d U3W  |d D6H  |d CEF  |d AU@  |d UKMGB  |d OCLCQ  |d WYU  |d CUY  |d LOA  |d ZCU  |d ICG  |d K6U  |d COCUF  |d VT2  |d DKC  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBB6I9554  |2 bnb 
015 |a GBB553529  |2 bnb 
016 7 |a 017993477  |2 Uk 
016 7 |a 017166921  |2 Uk 
019 |a 908097546  |a 932054983 
020 |a 9780128031070  |q (electronic bk.) 
020 |a 0128031077  |q (electronic bk.) 
020 |a 012803081X 
020 |a 9780128030813 
020 |z 9780128030813 
035 |a (OCoLC)905649782  |z (OCoLC)908097546  |z (OCoLC)932054983 
037 |a 9780128031070  |b Ingram Content Group 
050 4 |a QA372 
072 7 |a MAT  |x 041000  |2 bisacsh 
049 |a HCDD 
100 1 |a Wang, Xinwei,  |e author. 
245 1 0 |a Differential Quadrature and Differential Quadrature Based Element Methods :  |b Theory and Applications /  |c Xinwei Wang. 
264 1 |a Oxford, UK :  |b Butterworth-Heinemann,  |c [2015] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Vendor-supplied metadata. 
520 |a Differential Quadrature and Differential Quadrature Based Element Methods: Theory and Applications is a comprehensive guide to these methods and their various applications in recent years. Due to the attractive features of rapid convergence, high accuracy, and computational efficiency, the differential quadrature method and its based element methods are increasingly being used to study problems in the area of structural mechanics, such as static, buckling and vibration problems of composite structures and functional material structures. This book covers new developments and their applications in detail, with accompanying FORTRAN and MATLAB programs to help you overcome difficult programming challenges. It summarises the variety of different quadrature formulations that can be found by varying the degree of polynomials, the treatment of boundary conditions and employing regular or irregular grid points, to help you choose the correct method for solving practical problems. 
505 0 |a Cover; Title Page; Copyright Page; Contents; Preface; Acknowledgments; Chapter 1 -- Differential quadrature method; 1.1 -- Introduction; 1.2 -- Integral quadrature; 1.3 -- Differential quadrature method; 1.4 -- Determination of weighting coefficients; 1.5 -- Explicit formulation of weighting coefficients; 1.6 -- Various grid points; 1.7 -- Error analysis ; 1.8 -- Local adaptive differential quadrature method; 1.9 -- Differential quadrature time integration scheme; 1.9.1 -- The method of the DQ-based time integration; 1.9.2 -- Application and discussion; 1.10 -- Summary; References. 
505 8 |a 3.3.5 -- Method of modification of weighting coefficient-23.3.6 -- Method of modification of weighting coefficient-3; 3.3.7 -- Method of modification of weighting coefficient-4; 3.3.8 -- Virtual boundary point method or La-DQM; 3.3.9 -- Method of modification of weighting coefficient-5; 3.4 -- Discussion; 3.5 -- Numerical examples; 3.6 -- Summary; References; Chapter 4 -- Quadrature element method; 4.1 -- Introduction; 4.2 -- Quadrature element method; 4.3 -- Quadrature bar element; 4.4 -- Quadrature Timoshenko beam element; 4.5 -- Quadrature plane stress (strain) element. 
505 8 |a 4.6 -- Quadrature thick plate element4.6.1 -- Displacement and strain fields; 4.6.2 -- Constitutive equation; 4.6.3 -- Quadrature rectangular thick plate element; 4.7 -- Quadrature thin beam element; 4.8 -- Quadrature thin rectangular plate element; 4.8.1 -- Quadrature rectangular plate element with Lagrange interpolation; 4.8.2 -- Quadrature rectangular plate element with Hermite interpolation; 4.8.3 -- Quadrature rectangular plate element with mixed interpolations; 4.9 -- Extension to quadrilateral plate element with curved edges; 4.10 -- Discussion; 4.10.1 -- Assemblage procedures. 
505 8 |a 4.10.2 -- Work equivalent load vector4.10.3 -- Quadrature plate elements with nodes other than GLL points; 4.10.4 -- Numerical examples; 4.11 -- Summary; References; Chapter 5 -- In-plane stress analysis; 5.1 -- Introduction; 5.2 -- Formulation-I; 5.3 -- Formulation-II; 5.4 -- Results and discussion; 5.5 -- Equivalent boundary conditions; 5.6 -- Summary; References; Chapter 6 -- Static analysis of thin plate; 6.1 -- Introduction; 6.2 -- Rectangular thin plate under general loading; 6.2.1 -- Basic equations; 6.2.2 -- Differential quadrature formulation; 6.2.3 -- Equivalent load; 6.3 -- Applications. 
505 8 |a 6.3.1 -- Rectangular plate under uniformly distributed load. 
650 0 |a Differential equations  |x Numerical solutions. 
650 0 |a Numerical integration. 
650 7 |a MATHEMATICS  |x Numerical Analysis.  |2 bisacsh 
650 7 |a Differential equations  |x Numerical solutions  |2 fast 
650 7 |a Numerical integration  |2 fast 
758 |i has work:  |a Differential Quadrature and Differential Quadrature Based Element Methods (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH8HphD9GQHVYWqkQdwcT3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Wang, Xinwei.  |t Differential Quadrature and Differential Quadrature Based Element Methods: Theory and Applications.  |d Burlington : Elsevier Science, ©2015  |z 9780128030813 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=1997686  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD