The Seismoelectric Method : Theory and Application.

The seismoelectric method consists of measuring electromagnetic signals associated with the propagation of seismic waves or seismic sources in porous media. This method is useful in an increasing number of applications, for example to characterize aquifers, contaminant plumes or the vadose zone. Thi...

Full description

Saved in:
Bibliographic Details
Main Author: Revil, André
Other Authors: Jardani, Abderrahim, Sava, Paul, Haas, Allan
Format: eBook
Language:English
Published: Hoboken : Wiley, 2015.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000Mi 4500
001 ocn905988600
003 OCoLC
005 20240623213015.0
006 m o d
007 cr |n|||||||||
008 150321s2015 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d E7B  |d OCLCQ  |d DEBSZ  |d CDX  |d OCLCQ  |d K6U  |d OCLCO  |d IDB  |d OCLCF  |d COCUF  |d UAB  |d CCO  |d PIFFA  |d FVL  |d ZCU  |d MERUC  |d OCLCQ  |d OCLCO  |d U3W  |d STF  |d OCLCQ  |d ICG  |d INT  |d COO  |d VT2  |d OCLCQ  |d TKN  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d UEJ 
019 |a 924099154 
020 |a 9781118660287 
020 |a 1118660285 
035 |a (OCoLC)905988600  |z (OCoLC)924099154 
050 4 |a TN269.883 .R48 2013 
049 |a HCDD 
100 1 |a Revil, André. 
245 1 4 |a The Seismoelectric Method :  |b Theory and Application. 
260 |a Hoboken :  |b Wiley,  |c 2015. 
300 |a 1 online resource (303 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Title Page; Copyright Page; Contents; Foreword by Bernd Kulessa; Foreword by Niels Grobbe; Preface; Acknowledgments; Chapter 1 Introduction to the basic concepts; 1.1 The electrical double layer; 1.1.1 The case of silica; 1.1.1.1 A simplified approach; 1.1.1.2 The general case; 1.1.2 The case of clays; 1.1.3 Implications; 1.2 The streaming current density; 1.3 The complex conductivity; 1.3.1 Effective conductivity; 1.3.2 Saturated clayey media; 1.4 Principles of the seismoelectric method; 1.4.1 Main ideas; 1.4.2 Simple modeling with the acoustic approximation. 
505 8 |a 1.4.2.1 The acoustic approximation in a fluid1.4.2.2 Extension to porous media; 1.4.3 Numerical example of the coseismic and seismoelectric conversions; 1.5 Elements of poroelasticity; 1.5.1 The effective stress law; 1.5.2 Hooke ́s law in poroelastic media; 1.5.3 Drained versus undrained regimes; 1.5.4 Wave modes in the pure undrained regime; 1.6 Short history; 1.7 Conclusions; Chapter 2 Seismoelectric theory in saturated porous media; 2.1 Poroelastic medium filled with a viscoelastic fluid; 2.1.1 Properties of the two phases; 2.1.2 Properties of the porous material. 
505 8 |a 2.1.3 The mechanical equations2.1.3.1 Strain-stress relationships; 2.1.3.2 The field equations; 2.1.3.3 Note regarding the material properties; 2.1.3.4 Force balance equations; 2.1.4 The Maxwell equations; 2.1.5 Analysis of the wave modes; 2.1.6 Synthetic case studies; 2.1.7 Conclusions; 2.2 Poroelastic medium filled with a Newtonian fluid; 2.2.1 Classical Biot theory; 2.2.2 The u-p formulation; 2.2.3 Description of the electrokinetic coupling; 2.3 Experimental approach and data; 2.3.1 Measuring key properties; 2.3.1.1 Measuring the cation exchange capacity and the specific surface area. 
505 8 |a 2.3.1.2 Measuring the complex conductivity2.3.1.3 Measuring the streaming potential coupling coefficient; 2.3.2 Streaming potential dependence on salinity; 2.3.3 Streaming potential dependence on pH; 2.3.4 Influence of the inertial effect; 2.4 Conclusions; Chapter 3 Seismoelectric theory in partially saturated conditions; 3.1 Extension to the unsaturated case; 3.1.1 Generalized constitutive equations; 3.1.2 Description of the hydromechanical model; 3.1.3 Maxwell equations in unsaturated conditions; 3.2 Extension to two-phase flow. 
505 8 |a 3.2.1 Generalization of the Biot theory in two-phase flow conditions3.2.2 The u-p formulation for two-phase flow problems; 3.2.3 Seismoelectric conversion in two-phase flow; 3.2.4 The effect of water content on the coseismic waves; 3.2.5 Seismoelectric conversion; 3.3 Extension of the acoustic approximation; 3.4 Complex conductivity in partially saturated conditions; 3.5 Comparison with experimental data; 3.5.1 The effect of saturation; 3.5.2 Additional scaling relationships; 3.5.3 Relative coupling coefficient with the Brooks and Corey model. 
500 |a 3.5.4 Relative coupling coefficient with the Van Genuchten model. 
520 |a The seismoelectric method consists of measuring electromagnetic signals associated with the propagation of seismic waves or seismic sources in porous media. This method is useful in an increasing number of applications, for example to characterize aquifers, contaminant plumes or the vadose zone. This book provides the first full overview of the fundamental concepts of this method. It begins with a historical perspective, provides a full explanation of the fundamental mechanisms, laboratory investigations, and the formulation of the forward and inverse problems. It provides a recent extension. 
650 0 |a Seismic prospecting. 
650 0 |a Prospecting  |x Geophysical methods. 
650 7 |a Prospecting  |x Geophysical methods  |2 fast 
650 7 |a Seismic prospecting  |2 fast 
700 1 |a Jardani, Abderrahim. 
700 1 |a Sava, Paul. 
700 1 |a Haas, Allan. 
758 |i has work:  |a Seismoelectric method (Online) (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGTpGX4rtc688QfbWBkgPP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Revil, André.  |t Seismoelectric Method : Theory and Application.  |d Hoboken : Wiley, ©2015  |z 9781118660263 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=1895531  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD