Higher-order time asymptotics of fast diffusion in Euclidean space : a dynamical systems approach / Jochen Denzler, Herbert Koch, Robert J. McCann.

This paper quantifies the speed of convergence and higher-order asymptotics of fast diffusion dynamics on R [superscript]n to the Barenblatt (self similar) solution. Degeneracies in the parabolicity of this equation are cured by re-expressing the dynamics on a manifold with a cylindrical end, called...

Full description

Saved in:
Bibliographic Details
Main Authors: Denzler, Jochen (Author), Koch, Herbert, 1962- (Author), McCann, Robert J., 1968- (Author)
Format: eBook
Language:English
Published: Providence, Rhode Island : American Mathematical Society, 2015.
Series:Memoirs of the American Mathematical Society ; no. 1101.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 ocn906576164
003 OCoLC
005 20241006213017.0
006 m o d
007 cr un|||||||||
008 150406t20152014riua ob 000 0 eng d
040 |a GZM  |b eng  |e rda  |e pn  |c GZM  |d UIU  |d YDXCP  |d EBLCP  |d DEBSZ  |d IDB  |d OCLCA  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d SXB  |d OCLCQ  |d OCLCO 
019 |a 922981911 
020 |a 9781470420284  |q (online) 
020 |a 1470420287  |q (online) 
020 |z 9781470414085  |q (alkaline paper) 
020 |z 1470414082  |q (alkaline paper) 
035 |a (OCoLC)906576164  |z (OCoLC)922981911 
050 4 |a QA401  |b .D46 2015 
049 |a HCDD 
100 1 |a Denzler, Jochen,  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjDyXPcFWKkv49fFbjPVJC 
245 1 0 |a Higher-order time asymptotics of fast diffusion in Euclidean space :  |b a dynamical systems approach /  |c Jochen Denzler, Herbert Koch, Robert J. McCann. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2015. 
264 4 |c ©2014 
300 |a 1 online resource (v, 81 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 234, number 1101 
588 0 |a Print version record. 
500 |a "Volume 234, number 1101 (first of 5 numbers), March 2015." 
504 |a Includes bibliographical references (pages 79-81). 
520 |a This paper quantifies the speed of convergence and higher-order asymptotics of fast diffusion dynamics on R [superscript]n to the Barenblatt (self similar) solution. Degeneracies in the parabolicity of this equation are cured by re-expressing the dynamics on a manifold with a cylindrical end, called the cigar. The nonlinear evolution becomes differentiable in Hölder spaces on the cigar. The linearization of the dynamics is given by the Laplace-Beltrami operator plus a transport term (which can be suppressed by introducing appropriate weights into the function space norm), plus a finite-depth potential well with a universal profile. In the limiting case of the (linear) heat equation, the depth diverges, the number of eigenstates increases without bound, and the continuous spectrum recedes to infinity. We provide a detailed study of the linear and nonlinear problems in Hölder spaces on the cigar, including a sharp boundedness estimate for the semigroup, and use this as a tool to obtain sharp convergence results toward the Barenblatt solution, and higher order asymptotics. In finer convergence results (after modding out symmetries of the problem), a subtle interplay between convergence rates and tail behavior is revealed. The difficulties involved in choosing the right functional spaces in which to carry out the analysis can be interpreted as genuine features of the equation rather than mere annoying technicalities. 
505 0 |a ""Cover""; ""Title page""; ""Chapter 1. Introduction""; ""Chapter 2. Overview of Obstructions and Strategies, and Notation""; ""Chapter 3. The nonlinear and linear equations in cigar coordinates""; ""Chapter 4. The cigar as a Riemannian manifold""; ""Chapter 5. Uniform manifolds and Hölder spaces""; ""Chapter 6. Schauder estimates for the heat equation""; ""Chapter 7. Quantitative global well-posedness of the linear and nonlinear equations in Hölder spaces""; ""Chapter 8. The spectrum of the linearized equation""; ""Chapter 9. Proof of Theorem 1.1"" 
505 8 |a Chapter 10. Asymptotic estimates in weighted spaces: The case /(+2). Proof of Theorem 1.2 and its corollaries. -- Appendix A. Pedestrian derivation of all Schauder Estimates -- Bibliography -- Back Cover 
650 0 |a Mathematical physics. 
650 0 |a Geometry, Riemannian. 
650 0 |a Topological spaces. 
650 7 |a Geometry, Riemannian  |2 fast 
650 7 |a Mathematical physics  |2 fast 
650 7 |a Topological spaces  |2 fast 
700 1 |a Koch, Herbert,  |d 1962-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJyxhmwDkPWQYFtvd9cByd 
700 1 |a McCann, Robert J.,  |d 1968-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjr7dKXJR38mmMYh3wGHBX 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Higher-order time asymptotics of fast diffusion in Euclidean space (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH8DbWFD9fmBRWKdYPqMCP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Denzler, Jochen.  |t Higher-Order Time Asymptotics of Fast Diffusion in Euclidean Space.  |d Providence, Rhode Island : American Mathematical Society, 2015  |z 9781470414085  |w (DLC) 2014041890  |w (OCoLC)893784395 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1101. 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=3114315  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD