Phase Transitions in Foods.

'Phase Transitions in Foods' assembles the most recent research and theories on the topic, describing the phase and state transitions that affect technological properties of biological materials occurring in food processing and storage. It covers the role of water as a plasticizer, the eff...

Full description

Saved in:
Bibliographic Details
Main Authors: Roos, Yrjo H. (Author), Drusch, Stephan (Author)
Format: eBook
Language:English
Published: San Diego : Academic Press [Imprint] Elsevier Science & Technology Books Oct. 2015
Edition:2nd ed.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Front Cover
  • Phase Transitions in Foods
  • Copyright Page
  • Contents
  • About the Authors
  • Preface
  • 1 Introduction to phase transitions
  • 1.1 Introduction
  • 1.2 Thermodynamics
  • 1.2.1 Basic Terminology
  • 1.2.2 First Law of Thermodynamics
  • 1.2.2.1 Enthalpy
  • 1.2.2.2 Heat capacity
  • 1.2.3 Second Law of Thermodynamics
  • 1.2.3.1 Entropy
  • 1.2.3.2 Helmholtz free energy
  • 1.2.3.3 Gibbs energy
  • 1.3 Characterization of Phase Transitions
  • 1.3.1 Phase Diagrams
  • 1.3.2 Gibbs Energy of Phases
  • 1.3.3 Classification of Phase Transitions
  • 1.3.3.1 First-order transitions
  • 1.3.3.2 Second-order and higher-order transitions
  • 1.3.3.3 Effects of pressure on transition temperatures
  • 1.3.4 Effects of Composition on Transition Temperatures
  • 1.3.4.1 Raoult's law
  • 1.3.4.2 Henry's law
  • References
  • 2 Physical state and molecular mobility
  • 2.1 Introduction
  • 2.2 Crystallization and Melting
  • 2.2.1 Nucleation and Crystal Growth
  • 2.2.1.1 Nucleation
  • Homogeneous nucleation
  • Heterogeneous nucleation
  • Secondary nucleation
  • 2.2.1.2 Crystal growth
  • 2.3 The Physical State of Amorphous Materials
  • 2.3.1 Mechanical Properties
  • 2.3.1.1 Glass formation and glass transition
  • 2.3.1.2 Young's modulus
  • 2.3.1.3 Shear modulus
  • 2.3.1.4 Storage and loss moduli
  • 2.3.2 Characterization of the Physical State
  • 2.3.2.1 The glassy state
  • 2.3.2.2 Glass transition temperature range
  • 2.3.2.3 Rubbery plateau region
  • 2.3.2.4 Rubbery flow region
  • 2.3.2.5 Liquid flow region
  • 2.3.3 Glass Transition Theories
  • 2.3.3.1 Free volume theory
  • 2.3.3.2 Kinetic theory
  • 2.3.3.3 Thermodynamic theory
  • 2.3.3.4 Other theories
  • 2.4 Molecular Mobility and Plasticization
  • 2.4.1 Mechanical Properties
  • 2.4.1.1 Relaxation times
  • The WLF equation
  • WLF constants
  • 2.4.1.2 Viscosity
  • 2.4.1.3 Dynamic mechanical properties.
  • 2.4.2 Plasticization and Molecular Weight
  • 2.4.2.1 Melting temperature
  • 2.4.2.2 Glass transition and molecular weight
  • 2.4.2.3 Glass transitions of mixtures
  • 2.4.3 Crystallization of Amorphous Compounds
  • 2.4.3.1 Nucleation and crystal growth
  • 2.4.3.2 Crystallization kinetics
  • References
  • 3 Methodology
  • 3.1 Introduction
  • 3.2 Determination of the Physical State and Crystallinity
  • 3.2.1 Imaging Techniques
  • 3.2.1.1 Optical microscopy
  • 3.2.1.2 Electron microscopy
  • 3.2.1.3 Atomic force microscopy
  • 3.2.1.4 Magnetic resonance imaging and X-ray tomography
  • 3.2.2 Diffraction Techniques
  • 3.2.2.1 X-ray diffraction
  • 3.2.2.2 Electron and neutron diffraction
  • 3.2.3 Spectroscopic Techniques
  • 3.3 Determination of Physical State and Molecular Mobility
  • 3.3.1 NMR Spectroscopy
  • 3.3.2 ESR Spectroscopy
  • 3.3.3 Positron Annihilation Lifetime Spectroscopy
  • 3.4 Determination of Transition Temperatures and Structural Relaxations
  • 3.4.1 Calorimetry and Thermal Analysis
  • 3.4.1.1 Enthalpy and volume in phase transitions
  • 3.4.1.2 DSC and DTA
  • 3.4.1.3 Thermal mechanical analysis
  • 3.4.2 Mechanical and Dielectric Properties
  • 3.4.2.1 Changes at glass transition temperature
  • 3.4.2.2 Dynamic mechanical thermal analysis and mechanical spectroscopy
  • 3.4.2.3 Dielectric properties
  • References
  • 4 Water and phase transitions
  • 4.1 Introduction
  • 4.2 Properties of Water
  • 4.2.1 Phase Behavior of Water
  • 4.2.1.1 Phase behavior of pure water
  • 4.2.1.2 Supercooled amorphous water
  • 4.2.2 Water in Solutions
  • 4.2.2.1 Freezing temperature depression
  • 4.2.2.2 Boiling temperature elevation
  • 4.2.2.3 Eutectic solutions
  • 4.3 Water in Foods
  • 4.3.1 Sorption Behavior
  • 4.3.1.1 Sorption isotherms
  • 4.3.1.2 Sorption models
  • BET model
  • GAB model
  • 4.3.1.3 Water plasticization.
  • 4.3.2 Ice Formation and Freeze-Concentration
  • 4.3.2.1 Equilibrium freezing
  • Eutectic solutions
  • Supersaturated solutions
  • 4.3.2.2 Nonequilibrium freezing
  • 4.3.2.3 State diagrams
  • References
  • 5 Food components and polymers
  • 5.1 Introduction
  • 5.2 Carbohydrates
  • 5.2.1 Sugars
  • 5.2.1.1 Melting and crystallization
  • 5.2.1.2 Glass transitions
  • 5.2.1.3 Mixtures of sugars
  • 5.2.2 Starch
  • 5.2.2.1 Physical state of native starches
  • 5.2.2.2 Physical state of starch and starch components
  • Starch and starch components
  • Effect of composition
  • 5.2.2.3 Gelatinization and melting
  • Birefringence
  • X-Ray diffraction
  • Differential scanning calorimetry
  • Effects of water on gelatinization and melting
  • Effects of solutes
  • 5.2.2.4 Amylose-lipid complexes
  • 5.3 Proteins
  • 5.3.1 Denaturation
  • 5.3.2 Glass Transition
  • 5.3.2.1 Physical state of proteins
  • Cereal proteins
  • State diagrams
  • 5.4 Lipids
  • 5.4.1 Polymorphic Forms
  • 5.4.1.1 Calorimetric studies
  • 5.4.1.2 Other techniques
  • 5.4.2 Melting of Fats and Oils
  • 5.4.2.1 Melting behavior of fats and oils
  • 5.4.2.2 Solid fat content
  • 5.4.3 Mechanical Properties and Crystallinity
  • 5.4.3.1 Mechanical properties and firmness
  • 5.4.3.2 Plasticity
  • References
  • 6 Prediction of the physical state
  • 6.1 Introduction
  • 6.2 Prediction of Plasticization
  • 6.2.1 Fractional Models
  • 6.2.1.1 Gordon-Taylor equation
  • 6.2.1.2 Couchman-Karasz equation
  • 6.2.1.3 Other equations
  • Couchman-Karasz equation-exact form
  • Fox equation
  • Pochan-Beatty-Hinman equation
  • Linear equation
  • Huang equation
  • 6.2.2 Modeling Glass Transitions
  • 6.2.2.1 Fractional modeling of water plasticization
  • 6.2.2.2 Combined models of water activity and glass transition
  • 6.2.2.3 Inclusion of water sorption models
  • 6.3 Mechanical Properties and Flow.
  • 6.3.1 Viscosity of Amorphous Foods
  • 6.3.1.1 Viscosity of frozen foods
  • 6.3.1.2 Viscosity of low-moisture foods
  • Effect of thermal plasticization
  • Effects of water plasticization
  • 6.3.2 Viscoelastic Properties
  • 6.3.2.1 Relaxation time and time-temperature superposition principle
  • 6.3.2.2 Master curves of biologic materials
  • 6.3.2.3 Effect of molecular mass
  • 6.4 Stiffness
  • 6.4.1 Modulus Curves of Food Materials
  • 6.4.1.1 Effect of water on mechanical properties
  • 6.4.1.2 Mathematical analysis of stiffness
  • References
  • 7 Time-dependent phenomena
  • 7.1 Introduction
  • 7.2 Time-Dependent Properties of the Physical State
  • 7.2.1 Glass Formation
  • 7.2.1.1 Glass formation from melt
  • 7.2.1.2 Glass formation by solvent removal
  • Dehydration
  • Freezing
  • Freeze-drying
  • 7.2.2 Structural Relaxation Phenomena in Amorphous Foods
  • 7.2.2.1 Enthalpy relaxations
  • 7.2.2.2 Structural relaxation times
  • 7.3 Collapse Phenomena
  • 7.3.1 Stickiness and Caking
  • 7.3.1.1 Stickiness
  • 7.3.1.2 Caking
  • 7.3.2 Collapse
  • 7.3.2.1 Collapse and glass transition
  • 7.3.2.2 Collapse time
  • 7.3.2.3 Diffusivity
  • 7.4 Crystallization and Recrystallization
  • 7.4.1 Crystallization of Amorphous Sugars
  • 7.4.1.1 Crystallization of amorphous sugars
  • Effect of water
  • Effect of temperature
  • Crystallization kinetics
  • 7.4.1.2 Crystallization of sugars in amorphous foods
  • Low-moisture foods
  • Frozen foods
  • 7.4.2 Ice Formation and Recrystallization
  • 7.4.2.1 Ice formation
  • 7.4.2.2 Recrystallization of ice
  • Recrystallization mechanisms
  • Recrystallization in frozen foods
  • Control of recrystallization
  • 7.4.3 Retrogradation of Starch
  • 7.4.3.1 Starch and starch components
  • 7.4.3.2 Staling of bread
  • References
  • 8 Reaction kinetics
  • 8.1 Introduction
  • 8.2 Principles of Reaction Kinetics
  • 8.2.1 Reaction Order.
  • 8.2.1.1 Zero-order reactions
  • 8.2.1.2 First-order reactions
  • 8.2.1.3 Second-order reactions
  • 8.2.2 Temperature Dependence
  • 8.2.2.1 Q10 approach
  • 8.2.2.2 Arrhenius equation
  • 8.2.2.3 WLF equation
  • 8.3 Kinetics in Amorphous Foods
  • 8.3.1 Low-water Foods
  • 8.3.1.1 Mobility and reaction rates
  • 8.3.1.2 Diffusion-limited reactions
  • 8.3.1.3 Water plasticization
  • 8.3.1.4 Observed kinetics
  • Nonenzymatic browning
  • Other changes
  • 8.3.1.5 Effects of structural transformations
  • Collapse
  • Crystallization
  • 8.3.1.6 Stability maps
  • 8.3.2 Frozen Foods
  • 8.3.2.1 Quality changes in frozen foods
  • 8.3.2.2 Arrhenius and WLF kinetics
  • References
  • 9 Food processing and storage
  • 9.1 Introduction
  • 9.2 Food Processing
  • 9.2.1 Dehydration and Agglomeration
  • 9.2.1.1 Quality changes in dehydration
  • 9.2.1.2 Flavor retention and encapsulation
  • 9.2.1.3 Agglomeration
  • 9.2.1.4 Size reduction
  • 9.2.2 Melt Processing and Extrusion
  • 9.2.2.1 Plasticization and melting
  • 9.2.2.2 Structural properties
  • 9.2.2.3 Flavor encapsulation
  • 9.3 Food Formulation and Storage
  • 9.3.1 Stability and Its Prediction
  • 9.3.1.1 Low-water foods
  • 9.3.1.2 Frozen foods
  • 9.3.2 Food Formulation
  • 9.3.2.1 Food composition
  • Effects in food processing
  • Food composition and stability
  • 9.3.2.2 Application of state diagrams
  • References
  • Index
  • Back Cover.