Chipless RFID sensors / Nemai Chandra Karmakar, Emran Md Amin, Jhantu Kumar Saha.

"Providing a classification of smart materials based on sensing physical parameters (i.e. humidity, temperature, pH, gas, strain, light, etc.)"--

Saved in:
Bibliographic Details
Main Authors: Karmakar, Nemai Chandra, 1963- (Author), Amin, Emran Md (Author), Saha, Jhantu Kumar (Author)
Format: Electronic
Language:English
Published: Hoboken, New Jersey : Wiley, 2016.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Preface xv
  • Acknowledgments xxi
  • Abbreviations xxiii
  • Symbols xxv
  • 1 Introduction 1
  • 1.1 Tracking ID Technology, 1
  • 1.1.1 Barcoding, 1
  • 1.1.2 Radio-Frequency Identification, 3
  • 1.1.3 Chipless RFID, 4
  • 1.1.4 Chipless RFID Sensors, 4
  • 1.2 Chipless RFID Sensor System, 6
  • 1.3 Proposed Chipless RFID Sensor, 7
  • 1.4 Chapter Overview, 7
  • 1.4.1 Chapter 1: Introduction, 7
  • 1.4.2 Chapter 2: Literature Review, 7
  • 1.4.3 Chapter 3: Passive Microwave Designs, 8
  • 1.4.4 Chapter 4: Smart Materials for Chipless RFID Sensors, 9
  • 1.4.5 Chapter 5: Characterization of Smart Materials, 9
  • 1.4.6 Chapter 6: Chipless RFID Sensor for Noninvasive PD Detection and Localization, 9
  • 1.4.7 Chapter 7: Chipless RFID Sensor for Real-Time Environment Monitoring, 10
  • 1.4.8 Chapter 8: Chipless RFID Temperature Memory and Multiparameter Sensor, 10
  • 1.4.9 Chapter 9: Nanofabrication Techniques for Chipless RFID Sensor, 10
  • 1.4.10 Chapter 10: Chipless RFID Reader Architecture, 10
  • 1.4.11 Chapter 11: Case Studies, 11
  • References, 11
  • 2 Literature Review 13
  • 2.1 Introduction, 13
  • 2.2 Traditional RFID Sensors, 14
  • 2.2.1 Active RFID Sensors, 14
  • 2.2.2 Passive RFID Sensors, 15
  • 2.2.3 Low-Cost Chipless RFID Sensors, 16
  • 2.3 Challenges and Limitations of Current Chipless RFID Sensors, 21
  • 2.3.1 Fully Printable, 21
  • 2.3.2 Smart Sensing Materials, 22
  • 2.3.3 Multiple Parameter Sensing, 22
  • 2.3.4 Chipless RFID Sensor Systems, 22
  • 2.3.5 Applications, 22
  • 2.4 Motivation for a Novel Chipless RFID Sensor, 23
  • 2.5 Proposed Chipless RFID Sensor, 23
  • 2.5.1 Noninvasive PD Detection and Localization, 23
  • 2.5.2 Real-Time Environment Monitoring, 24
  • 2.5.3 Nonvolatile Memory Sensor for Event Detection, 24
  • 2.5.4 Single-Node Multiparameter Chipless RFID Sensor, 24
  • 2.6 Conclusion, 24
  • References, 25
  • 3 Passive Microwave Design 29
  • 3.1 Introduction, 29
  • 3.2 Chapter Overview, 29
  • 3.3 Theory, 31
  • 3.3.1 Passive Microwave Components, 31.
  • 3.3.2 Integrated Chipless RFID Sensor, 39
  • 3.4 Design, 40
  • 3.4.1 Tri-Step SIR, 40
  • 3.4.2 Semicircular Patch Antenna, 43
  • 3.4.3 Cascaded Multiresonator-Based Chipless RFID Sensor, 43
  • 3.4.4 Multislot Patch Resonator, 44
  • 3.4.5 ELC Resonator for RF Sensing, 48
  • 3.4.6 Backscatterer-Based Chipless RFID Tag Sensor, 49
  • 3.5 Simulation and Measured Results, 54
  • 3.5.1 Tri-Step SIR, 54
  • 3.5.2 Semicircular Patch Antenna, 55
  • 3.5.3 Cascaded Multiresonator-Based Chipless RFID Sensor, 56
  • 3.5.4 Multislot Patch Resonator, 56
  • 3.5.5 ELC Resonator, 62
  • 3.5.6 Backscatterer-Based Chipless RFID Tag Sensor, 62
  • 3.6 Conclusion, 65
  • References, 67
  • 4 Smart Materials for Chipless RFID Sensors 69
  • 4.1 Introduction, 69
  • 4.2 Sensing Materials, 70
  • 4.2.1 Smart Materials, 71
  • 4.2.2 Classification of Smart Materials for RF Sensing, 72
  • 4.3 Temperature Sensing Materials, 73
  • 4.3.1 Phenanthrene, 73
  • 4.3.2 Ionic Plastic Crystal, 73
  • 4.3.3 Nanostructured Metal Oxide, 76
  • 4.4 Humidity Sensing Materials, 77
  • 4.4.1 Kapton, 77
  • 4.4.2 Polyvinyl Alcohol, 78
  • 4.5 pH Sensing Materials, 78
  • 4.6 Gas Sensing Materials, 79
  • 4.7 Strain and Crack Sensing Materials, 80
  • 4.8 Light Sensing Materials, 80
  • 4.8.1 SIR Loaded with CdS Photoresistor, 81
  • 4.9 Other Potentials Smart Materials for RF Sensing, 82
  • 4.9.1 Graphene, 83
  • 4.9.2 Nanowires, 85
  • 4.9.3 Nanoparticles, 85
  • 4.9.4 Nanocomposites, 86
  • 4.10 Discussion, 88
  • 4.11 Conclusion, 93
  • References, 94
  • 5 Characterization of Smart Materials 99
  • 5.1 Introduction, 99
  • 5.2 Characterization of Materials for Microwave Sensing, 101
  • 5.3 X-Ray Diffraction, 101
  • 5.4 Raman Scattering Spectroscopy, 102
  • 5.5 Secondary Ion Mass Spectrometer, 103
  • 5.6 Transmission Electron Microscopy, 104
  • 5.7 Scanning Electron Microscope, 104
  • 5.8 Atomic Force Microscopy, 105
  • 5.9 Infrared Spectroscopy (Fourier Transform Infrared Reflection), 106
  • 5.10 Spectroscopic Ellipsometry, 106
  • 5.10.1 Basic Steps for a Model-Based Analysis, 111.
  • 5.10.2 Layered Optical Model, 111
  • 5.10.3 Optical Model for Surface Roughness, 112
  • 5.10.4 Approximation of Surface Roughness As an Oxide Layer, 112
  • 5.10.5 Optical Model for Index Gradients, 112
  • 5.10.6 Procedure for an Ellipsometric Modeling, 113
  • 5.10.7 Regression, 113
  • 5.10.8 Dielectric Film, 114
  • 5.10.9 Mixed or Composite Materials, 114
  • 5.10.10 Accuracy and Precision of SE Experiments, 114
  • 5.11 UV-Visible Spectrophotometers, 115
  • 5.12 Electrical Conductivity Measurement, 115
  • 5.13 Microwave Characterization (Scattering Parameters--Complex Permittivity, Dielectric Loss, and Reflection Loss) for Sensing Materials, 117
  • 5.13.1 Basic Microwave-Material Interaction Aspects, 118
  • 5.13.2 Methods of Measurement of Dielectric Properties, 119
  • 5.14 Discussion on Characterization of Smart Materials, 120
  • 5.15 Conclusion, 121
  • References, 123
  • 6 Chipless RFID Sensor for Noninvasive PD Detection and Localization 125
  • 6.1 Introduction, 125
  • 6.1.1 Radiometric PD Detection, 127
  • 6.2 Theory, 128
  • 6.2.1 Proposed PD Sensor, 128
  • 6.2.2 PD Sensor System Overview, 129
  • 6.2.3 Simultaneous PD Detection, 130
  • 6.3 PD Localization Using Cascaded Multiresonator-Based Sensor, 133
  • 6.3.1 PD Sensor, 133
  • 6.3.2 Experimentation with PD Signal, 133
  • 6.3.3 Data Encoding in PD Signal, 134
  • 6.4 Simultaneous PD Detection, 138
  • 6.4.1 Time-Frequency Analysis, 138
  • 6.4.2 Effect of Time and Frequency Resolution, 138
  • 6.4.3 Simultaneous PD Detection Incorporating Time Delay, 141
  • 6.5 Conclusion, 143
  • References, 145
  • 7 Chipless RFID Sensor for Real-Time Environment Monitoring 149
  • 7.1 Introduction, 149
  • 7.2 Phase 1. Humidity Sensing Polymer Characterization and Sensitivity Analysis, 149
  • 7.2.1 Theory of Dielectric Sensor, 149
  • 7.2.2 Characterization of Humidity Sensing Polymers, 151
  • 7.2.3 Sensitivity Curve and Comparative Study, 156
  • 7.3 Phase 2. Chipless RFID Humidity Sensor, 161
  • 7.3.1 Backscatterer-Based Chipless RFID Humidity Sensor, 161.
  • 7.3.2 Experimentation and Results, 162
  • 7.3.3 Calibration Curve for Humidity Sensor, 163
  • 7.3.4 Hysteresis Analysis, 165
  • 7.4 Conclusion, 168
  • References, 169
  • 8 Chipless RFID Temperature Memory and Multiparameter Sensor 171
  • 8.1 Introduction, 171
  • 8.2 Phase 1: Chipless RFID Memory Sensor, 173
  • 8.2.1 Theory, 173
  • 8.2.2 Design of Memory Sensor with ELC Resonator, 174
  • 8.2.3 Experimentation for Chipless RFID Memory Sensor, 175
  • 8.3 Phase 2: Chipless RFID Multiparameter Sensor, 178
  • 8.3.1 Theory, 178
  • 8.3.2 Design, 179
  • 8.3.3 Experimentation for Multiple Parameter Sensing, 180
  • 8.3.4 Practical Challenges of Multiparameter Chipless Sensors, 183
  • 8.4 Conclusion, 183
  • References, 184
  • 9 Nanofabrication Techniques for Chipless RFID Sensors 187
  • 9.1 Chapter Overview, 187
  • 9.2 Fabrication Techniques, 188
  • 9.2.1 Introduction, 188
  • 9.2.2 Classification of Fabrication Techniques, 188
  • 9.3 Electrodeposition, 189
  • 9.4 Physical Vapor Deposition, 189
  • 9.4.1 Thermal Evaporation, 190
  • 9.4.2 Sputtering, 190
  • 9.4.3 Molecular Beam Epitaxy, 191
  • 9.5 Wet Chemical Synthesis, 192
  • 9.6 Plasma Processing, 193
  • 9.7 Etching, 194
  • 9.8 Laser Processing, 195
  • 9.9 Lithography, 196
  • 9.9.1 Photolithography, 196
  • 9.9.2 Electron beam lithography, 198
  • 9.9.3 Ion beam lithography, 200
  • 9.9.4 Nanoimprint lithography (NIL)/Hot Embossing, 201
  • 9.9.5 Thermal Nanoimprint Lithography, 201
  • 9.9.6 UV-Based Nanoimprint Lithography, 202
  • 9.9.7 Reverse Contact UVNIL-RUVNIL, 203
  • 9.10 Surface or Bulk Micromachining, 203
  • 9.11 Printing Techniques, 204
  • 9.11.1 Screen Printing, 205
  • 9.11.2 Inkjet Printing, 207
  • 9.11.3 Laser Printing, 209
  • 9.12 Discussion on Nanofabrication Techniques, 209
  • 9.13 Chipless RFID Sensors on Flexible Substrates, 213
  • 9.14 Conclusion, 213
  • References, 215
  • 10 Chipless RFID Reader Architecture 217
  • 10.1 Introduction, 217
  • 10.2 Reader Architecture, 217
  • 10.2.1 RF Module, 218
  • 10.2.2 Digital Module, 219.
  • 10.3 Operational Flowchart of a Chipless RFID Reader, 221
  • 10.3.1 Reader Calibration, 221
  • 10.3.2 Real-Time Sensor Data Decoding, 223
  • 10.3.3 Tag ID Decoding, 223
  • 10.4 Conclusion, 223
  • References, 224
  • 11 Case Studies 225
  • 11.1 Introduction, 225
  • 11.2 Food Safety, 226
  • 11.3 Health, 229
  • 11.4 Emergency Services, 232
  • 11.5 Smart Home, 234
  • 11.6 Agricultural Industry, 234
  • 11.7 Infrastructure Condition Monitoring, 236
  • 11.8 Transportation and Logistics, 236
  • 11.9 Authentication and Security, 236
  • 11.9.1 Solution, 237
  • 11.10 Power Industry, 238
  • 11.11 Conclusion and Original Contributions, 239
  • References, 241
  • Index 243.