Skip to content
Library Home
Start Over
Research Databases
E-Journals
Course Reserves
Library Home
Login to library account
English
Deutsch
Español
Français
Italiano
日本語
Nederlands
Português
Português (Brasil)
中文(简体)
中文(繁體)
Türkçe
עברית
Gaeilge
Cymraeg
Ελληνικά
Català
Euskara
Русский
Čeština
Suomi
Svenska
polski
Dansk
slovenščina
اللغة العربية
বাংলা
Galego
Tiếng Việt
Hrvatski
हिंदी
Հայերէն
Українська
Language
Library Catalog
All Fields
Title
Author
Subject
Call Number
ISBN/ISSN
Find
Advanced Search
|
Browse
|
Search Tips
Lie algebras graded by the roo...
Cite this
Text this
Email this
Print
Export Record
Export to RefWorks
Export to EndNoteWeb
Export to EndNote
Save to List
Permanent link
Lie algebras graded by the root systems BC_r, r \ge 2 / Bruce Allison, Georgia Benkart, Yun Gao.
Saved in:
Bibliographic Details
Main Author:
Allison, Bruce N. (Bruce Normansell), 1945-
Other Authors:
Benkart, Georgia, 1949-
,
Gao, Yun, 1963-
Format:
eBook
Language:
English
Published:
Providence, R.I. :
American Mathematical Society,
©2002.
Series:
Memoirs of the American Mathematical Society.
Subjects:
Lie algebras.
Lie algebras
Online Access:
Click for online access
Holdings
Description
Table of Contents
Similar Items
Staff View
Table of Contents:
I. Introduction II. The $\mathfrak {g}$-module decomposition of a $\mathrm {BC}_r$-graded Lie algebra, $r \geq 3$ (excluding type $\mathrm {D}_3$) III. Models for $\mathrm {BC}_r$-graded Lie algebras, $r \geq 3$ (excluding type $\mathrm {D}_3$) IV. The $\mathfrak {g}$-module decomposition of a $\mathrm {BC}_r$-graded Lie algebra with grading subalgebra of type $\mathrm {B}_2$, $\mathrm {C}_2$, $\mathrm {D}_2$ or $\mathrm {D}_3 VI. Models of $\mathrm {BC}_r$-graded Lie algebras with grading subalgebra of type $\mathrm {B}_2$, $\mathrm {C}_2$, $\mathrm {D}_2$ or $\mathrm {D}_3.
Similar Items
Lie algebras graded by the root systems BCr̳r, r[greater than or equal to] 2
by: Allison, Bruce N. (Bruce Normansell), 1945-
Published: (2002)
Lie algebras and Lie groups : five papers prepared in connection with the First Summer Mathematical Institute.
Published: (1972)
Algebraic groups and modular Lie algebras
by: Humphreys, James E.
Published: (1967)
Unitary representation theory for solvable lie groups
by: Brezin, Jonathan Paul, 1943-
Published: (1968)
Extended affine Lie algebras and their root systems
by: Azam, Saeid, et al.
Published: (1997)