Lie algebras graded by the root systems BC_r, r \ge 2 / Bruce Allison, Georgia Benkart, Yun Gao.

Saved in:
Bibliographic Details
Main Author: Allison, Bruce N. (Bruce Normansell), 1945-
Other Authors: Benkart, Georgia, 1949-, Gao, Yun, 1963-
Format: eBook
Language:English
Published: Providence, R.I. : American Mathematical Society, ©2002.
Series:Memoirs of the American Mathematical Society.
Subjects:
Online Access:Click for online access
Table of Contents:
  • I. Introduction II. The $\mathfrak {g}$-module decomposition of a $\mathrm {BC}_r$-graded Lie algebra, $r \geq 3$ (excluding type $\mathrm {D}_3$) III. Models for $\mathrm {BC}_r$-graded Lie algebras, $r \geq 3$ (excluding type $\mathrm {D}_3$) IV. The $\mathfrak {g}$-module decomposition of a $\mathrm {BC}_r$-graded Lie algebra with grading subalgebra of type $\mathrm {B}_2$, $\mathrm {C}_2$, $\mathrm {D}_2$ or $\mathrm {D}_3 VI. Models of $\mathrm {BC}_r$-graded Lie algebras with grading subalgebra of type $\mathrm {B}_2$, $\mathrm {C}_2$, $\mathrm {D}_2$ or $\mathrm {D}_3.