Diagonalizing quadratic bosonic operators by non-autonomous flow equations / Volker Bach, Jean-Bernard Bru.

The authors study a non-autonomous, non-linear evolution equation on the space of operators on a complex Hilbert space. They specify assumptions that ensure the global existence of its solutions and allow them to derive its asymptotics at temporal infinity. They demonstrate that these assumptions ar...

Full description

Saved in:
Bibliographic Details
Main Authors: Bach, Volker, 1965- (Author), Bru, J.-B. (Jean-Bernard), 1973- (Author)
Format: eBook
Language:English
Published: Providence, Rhode Island : American Mathematical Society, 2016.
Series:Memoirs of the American Mathematical Society ; no. 1138.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 ocn938459033
003 OCoLC
005 20241006213017.0
006 m o d
007 cr un|||||||||
008 151207t20162015riu ob 000 0 eng d
040 |a COO  |b eng  |e rda  |e pn  |c COO  |d UIU  |d GZM  |d OCLCF  |d LLB  |d GZM  |d OCLCA  |d YDX  |d EBLCP  |d IDB  |d INT  |d OCLCQ  |d LEAUB  |d OCLCQ  |d UKAHL  |d LOA  |d OCLCO  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d SXB  |d OCLCQ  |d OCLCO 
020 |a 9781470428280  |q (online) 
020 |a 1470428288  |q (online) 
020 |z 9781470417055  |q (alk. paper) 
020 |z 1470417057  |q (alk. paper) 
035 |a (OCoLC)938459033 
050 4 |a QC174.17.H3  |b B33 2016 
049 |a HCDD 
100 1 |a Bach, Volker,  |d 1965-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJd3Q7dBwcj3YfPrfRdhHC 
245 1 0 |a Diagonalizing quadratic bosonic operators by non-autonomous flow equations /  |c Volker Bach, Jean-Bernard Bru. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2016. 
264 4 |c ©2015 
300 |a 1 online resource (v, 122 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 240, number 1138 
588 0 |a Online resource; title from PDF title page (viewed February 16, 2016). 
500 |a "Volume 240, number 1138 (fourth of 5 numbers), March 2016." 
504 |a Includes bibliographical references (pages 121-122). 
505 0 0 |t Introduction --  |t Diagonalization of Quadratic Boson Hamiltonians --  |t Brocket-Wegner Flow for Quadratic Boson Operators --  |t Illustration of the Method --  |t Technical Proofs on the One-Particle Hilbert Space --  |t Technical Proofs on the Boson Fock Space --  |t Appendix. 
520 |a The authors study a non-autonomous, non-linear evolution equation on the space of operators on a complex Hilbert space. They specify assumptions that ensure the global existence of its solutions and allow them to derive its asymptotics at temporal infinity. They demonstrate that these assumptions are optimal in a suitable sense and more general than those used before. The evolution equation derives from the Brocket-Wegner flow that was proposed to diagonalize matrices and operators by a strongly continuous unitary flow. In fact, the solution of the non-linear flow equation leads to a diagonali. 
650 0 |a Hamiltonian operator. 
650 0 |a Matrices. 
650 0 |a Hilbert space. 
650 7 |a Hamiltonian operator  |2 fast 
650 7 |a Hilbert space  |2 fast 
650 7 |a Matrices  |2 fast 
700 1 |a Bru, J.-B.  |q (Jean-Bernard),  |d 1973-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjGqWkxh39vqwMypggh9rC 
710 2 |a American Mathematical Society,  |e publisher. 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1138. 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=4901857  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD