Energy recovery / Edgard DuBois and Arthur Mercier, editors.

Saved in:
Bibliographic Details
Other Authors: DuBois, Edgard, Mercier, Arthur
Format: eBook
Language:English
Published: New York : Nova Science Publishers, ©2009.
Subjects:
Online Access:Click for online access
Table of Contents:
  • ENERGY RECOVERY; CONTENTS; PREFACE; BIOGAS RECOVERY FROM LANDFILLS; ABSTRACT; I. INTRODUCTION; II. REGULATORY CONSIDERATIONS; A.U Landfill Directive 1999/31/EC; B. RCRA Regulations; C. CAA Regulations; D. CWA Regulations; III. SANITARY AND BIOREACTOR LANDFILLS; A. Development of Sanitary Landfills; B. Bioreactor Landfills; 1. Anaerobic bioreactor landfills; 2. Aerobic bioreactor landfills; 3. Aerobic-anaerobic bioreactor landfills; C. Features Unique to Bioreactor Landfills; D. Potential Advantages of Bioreactor Landfills; IV. LANDFILL GAS (LFG); A. Landfill Gas Characteristics.
  • 1. Density and viscosity2. Heat value content; 3. Non-methane organic compounds; 4. Water vapor; 5. Others; B. Landfill Gas Composition; C. Landfill Gas Yield; D. LFG Emission; 1. LFG Generation; 1.1. LFG generation mechanisms; Volatilization; Biological decomposition; Stage I. Hydrolysis/aerobic degradation; Stage II. Hydrolysis and fermentation; Stage III. Acetogenesis; Stage IV. Methanogenesis; Stage V. Oxidation; 1.2. Factors affecting LFG generation; 1. Site characteristics; 2. Waste characteristics; 3. Age of the waste; 4. Temperature; 5. Pressure; 6. Moisture content and movement.
  • 7. Atmospheric conditions8. Oxygen concentration; 9. Hydrogen concentration; 10. Precipitation; 11. Density of the waste; 12. Nutrients and trace metals; 13. Acidity; 14. Inhibitors; 2. LFG Transport; 2.1. LFG transport mechanisms; 2.2. Factors affecting LFG transport mechanisms; E. LFG Production Enhancement Methods; 1. Leachate recirculation; 2. pH buffering; 3. Sludge addition; 4. Temperature control; 5. Reduced waste particle size; 6. Cell design, daily cover and compaction of waste; 7. Pre-treatment; V. LANDFILL GAS BEHAVIOUR; A. LFG Movement and Migration; B. Monitoring of LFG.
  • C. LFG Hazards1. LFG explosion hazard; 2. LFG asphyxiation hazard; 3. Landfill odors; VI. MODELING OF METHANE GAS GENERATIONAND EMISSION FROM LANDFILLS; A. General; B.U.S.E.P.A. Model
  • Landgem; 1. Model description; 1.1. Input Parameters; Methane generation potential (L0); Methane generation rate (k); C. IPCC-First Order Decay (FOD) Model; 1. Model description; 1.1. Input Parameters; Degradable Organic Carbon (j DOC); Decay rate/methane generation rate (j k); D. Regression Models; F. Other Models; VII. LANDFILL GAS ENERGY SYSTEMS; A. LFG Collection System; Passive venting.
  • Physical barriersPumping extraction systems; B. LFG Pretreatment System; C. LFG Utilization System; 1. Combustion technologies (Flaring Practices) LFG flaring; 1.1. Open flame flares; 1.2. Enclosed flame flares; 1.3. Other enclosed combustion technologies; 2. Non-combustion technologies; 2.1. Energy recovery technologies; 2.2. Gas to product conversion technologies; VIII. CASE STUDY: CALGARY BIOCELL PROJECT; A. Introduction; B. The Calgary Biocell: Background and Construction Phase; C. Operation of the Calgary Biocell; 1. Biocell stage 1: Anaerobic decomposition with gas extraction.