MARC

LEADER 00000cam a2200000 a 4500
001 ocn957437229
003 OCoLC
005 20240623213015.0
006 m o d
007 cr cnu---unuuu
008 160827s2016 enk ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d N$T  |d RECBK  |d YDX  |d N$T  |d OCLCQ  |d OCLCF  |d COO  |d VGM  |d K6U  |d MERUC  |d LOA  |d ZCU  |d ICG  |d D6H  |d WRM  |d STF  |d OCLCQ  |d S8J  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ  |d UEJ  |d OCLCO 
019 |a 957156987  |a 957615380  |a 959274959  |a 959536711 
020 |a 9781119006558  |q (electronic bk.) 
020 |a 1119006554  |q (electronic bk.) 
020 |z 9781119006558 
020 |z 1119006554 
020 |z 9781119006589 
020 |z 1119006589 
020 |z 9781848217386 
020 |z 1848217382 
035 |a (OCoLC)957437229  |z (OCoLC)957156987  |z (OCoLC)957615380  |z (OCoLC)959274959  |z (OCoLC)959536711 
050 4 |a TK7870.25 
072 7 |a TEC  |x 009070  |2 bisacsh 
049 |a HCDD 
100 1 |a Fanet, Hervé,  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjBVPtfmMVFq6PmQRhQXMK 
245 1 0 |a Ultra low power electronics and adiabatic solutions /  |c Hervé Fanet. 
260 |a Hoboken :  |b Wiley,  |c 2016. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Electronics engineering series 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource, title from PDF title page (EBSCO, viewed October 3, 2016). 
505 0 |a Cover -- Title Page -- Copyright -- Contents -- Introduction -- 1. Dissipation Sources in Electronic Circuits -- 1.1. Brief description of logic types -- 1.1.1. Boolean logic -- 1.1.2. Combinational and sequential logic -- 1.1.3. NMOS and PMOS transistors -- 1.1.4. Complementary CMOS logic -- 1.1.5. Pass-transistor logic -- 1.1.6. Dynamic logic -- 1.2. Origins of heat dissipation in circuits -- 1.2.1. Joule effect in circuits -- 1.2.2. Calculating dynamic power -- 1.2.3. Calculating static power and its origins -- 2. Thermodynamics and Information Theory -- 2.1. Recalling the basics: entropy and information -- 2.1.1. Statistical definition of entropy -- 2.1.2. Macroscopic energy and entropy -- 2.1.3. Thermostat exchange, Boltzmann's law and the equal division of energy -- 2.1.4. Summary and example of energy production in a conductor carrying a current -- 2.1.5. Information and the associated entropy -- 2.2. Presenting Landauer's principle -- 2.2.1. Presenting Landauer's principle and other examples -- 2.2.2. Experimental validations of Landauer's principle -- 2.3. Adiabaticity and reversibility -- 2.3.1. Adiabatic principle of charging capacitors -- 2.3.2. Adiabaticity and reversibility: a circuit approach -- 3. Transistor Models in CMOS Technology -- 3.1. Reminder on semiconductor properties -- 3.1.1. State densities and semiconductor properties -- 3.1.2. Currents in a semiconductor -- 3.1.3. Contact potentials -- 3.1.4. Metal-oxide semiconductor structure -- 3.1.5. Weak and strong inversion -- 3.2. Long- and short-channel static models -- 3.2.1. Basic principle and brief history of semiconductor technology -- 3.2.2. Transistor architecture and Fermi pseudo-potentials -- 3.2.3. Calculating the current in a long-channel static regime -- 3.2.4. Calculating the current in a short-channel regime -- 3.3. Dynamic transistor models. 
505 8 |a 3.3.1. Quasi-static regime -- 3.3.2. Dynamic regime -- 3.3.3. "Small signals" transistor model -- 4. Practical and Theoretical Limits of CMOS Technology -- 4.1. Speed-dissipation trade-off and limits of CMOS technology -- 4.1.1. From the transistor to the integrated circuit -- 4.1.2. Trade-off between speed and consumption -- 4.1.3. The trade-off between dynamic consumption and static consumption -- 4.2. Sub-threshold regimes -- 4.2.1. Recall of the weak inversion properties -- 4.2.2. Limits to sub-threshold CMOS technology -- 4.3. Practical and theoretical limits in CMOS technology -- 4.3.1. Economic considerations and evolving methodologies -- 4.3.2. Technological difficulties: dissipation, variability and interconnects -- 4.3.3. Theoretical limits and open questions -- 5. Very Low Consumption at System Level -- 5.1. The evolution of power management technologies -- 5.1.1. Basic techniques for reducing dynamic power -- 5.1.2. Basic techniques for reducing static power -- 5.1.3. Designing in 90, 65 and 45 nm technology -- 5.2. Sub-threshold integrated circuits -- 5.2.1. Sub-threshold circuit features -- 5.2.2. Pipeline and parallelization -- 5.2.3. New SRAM structure -- 5.3. Near-threshold circuits -- 5.3.1. Optimization method -- 5.4. Chip interconnect and networks -- 5.4.1. Dissipation in the interconnect -- 5.4.2. Techniques for reducing dissipation in the interconnect -- 6. Reversible Computing and Quantum Computing -- 6.1. The basis for reversible computing -- 6.1.1. Introduction -- 6.1.2. Group structure of reversible gates -- 6.1.3. Conservative gates, linearity and affinity -- 6.1.4. Exchange gates -- 6.1.5. Control gates -- 6.1.6. Two basic theorems: "no fan-out" and "no cloning" -- 6.2. A few elements for synthesizing a function -- 6.2.1. The problem and constraints on synthesis -- 6.2.2. Synthesizing a reversible function. 
505 8 |a 6.2.3. Synthesizing an irreversible function -- 6.2.4. The adder example -- 6.2.5. Hardware implementation of reversible gates -- 6.3. Reversible computing and quantum computing -- 6.3.1. Principles of quantum computing -- 6.3.2. Entanglement -- 6.3.3. A few examples of quantum gates -- 6.3.4. The example of Grover's algorithm -- 7. Quasi-adiabatic CMOS Circuits -- 7.1. Adiabatic logic gates in CMOS -- 7.1.1. Implementing the principles of optimal charge and adiabatic pipeline -- 7.1.2. ECRL and PFAL in CMOS -- 7.1.3. Comparison to other gate technologies -- 7.2. Calculation of dissipation in an adiabatic circuit -- 7.2.1. Calculation in the normal regime -- 7.2.2. Calculation in sub-threshold regimes -- 7.3. Energy-recovery supplies and their contribution to dissipation -- 7.3.1. Capacitor-based supply -- 7.3.2. Inductance-based supply -- 7.4. Adiabatic arithmetic architecture -- 7.4.1. Basic principles -- 7.4.2. Adder example -- 7.4.3. The interest in complex gates -- 8. Micro-relay Based Technology -- 8.1. The physics of micro-relays -- 8.1.1. Different computing technologies -- 8.1.2. Different actuation technologies -- 8.1.3. Dynamic modeling of micro-electro-mechanical relays -- 8.1.4. Implementation examples and technological difficulties -- 8.2. Calculation of dissipation in a micro-relay based circuit -- 8.2.1. Optimization of micro-relays through electrostatic actuati -- 8.2.2. Adiabatic regime solutions -- 8.2.3. Comparison between CMOS logic and micro-relays -- Bibliography -- Index -- Other titles from iSTE in Electronics Engineering -- EULA. 
650 0 |a Electronic apparatus and appliances  |x Cooling. 
650 0 |a Power electronics  |x Design and construction. 
650 0 |a Low voltage systems  |x Design and construction. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Electronic apparatus and appliances  |x Cooling  |2 fast 
650 7 |a Low voltage systems  |x Design and construction  |2 fast 
650 7 |a Power electronics  |x Design and construction  |2 fast 
758 |i has work:  |a Ultra low power electronics and adiabatic solutions (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFQGvfQHGrjF6jHJDKQYHd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Fanet, Hervé.  |t Ultra low power electronics and adiabatic solutions.  |d Hoboken : Wiley, 2016  |z 9781848217386  |z 1848217382  |w (OCoLC)885229439 
830 0 |a Electronics engineering series (London, England) 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=4648723  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD