|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
ocn964526286 |
003 |
OCoLC |
005 |
20241006213017.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
161129s2016 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d DG1
|d YDX
|d N$T
|d OCLCO
|d IDEBK
|d OCLCF
|d UMI
|d EBLCP
|d CNCGM
|d UPM
|d DG1
|d WTU
|d DEBSZ
|d LIP
|d OTZ
|d OCLCQ
|d CCO
|d K6U
|d LOA
|d COCUF
|d MERUC
|d ZCU
|d ICG
|d UAB
|d COO
|d LIV
|d D6H
|d OCLCQ
|d WRM
|d STF
|d KSU
|d OCLCQ
|d VT2
|d AU@
|d OCLCQ
|d WYU
|d LVT
|d S9I
|d TKN
|d U3W
|d OCLCQ
|d DKC
|d OCLCQ
|d UKAHL
|d OCLCQ
|d UKMGB
|d OCLCQ
|d HS0
|d UWK
|d SXB
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|d OCLCQ
|d UEJ
|d OCLCO
|d OCLCQ
|d SFB
|
015 |
|
|
|a GBB6F3220
|2 bnb
|
016 |
7 |
|
|a 018095315
|2 Uk
|
019 |
|
|
|a 967682734
|a 968749374
|a 1048391952
|a 1055346886
|a 1066625513
|a 1081208491
|a 1162262947
|a 1164933609
|a 1166165023
|a 1167560685
|a 1171334595
|a 1228592512
|
020 |
|
|
|a 9781119008989
|q (electronic bk.)
|
020 |
|
|
|a 1119008980
|q (electronic bk.)
|
020 |
|
|
|a 9781119058649
|q (electronic bk.)
|
020 |
|
|
|a 1119058643
|q (electronic bk.)
|
020 |
|
|
|a 9781119058618
|q (electronic bk.)
|
020 |
|
|
|a 1119058619
|q (electronic bk.)
|
020 |
|
|
|a 9780387797113
|
020 |
|
|
|a 0387797114
|
020 |
|
|
|z 9781848216167
|q (print)
|
020 |
|
|
|z 1848216165
|
035 |
|
|
|a (OCoLC)964526286
|z (OCoLC)967682734
|z (OCoLC)968749374
|z (OCoLC)1048391952
|z (OCoLC)1055346886
|z (OCoLC)1066625513
|z (OCoLC)1081208491
|z (OCoLC)1162262947
|z (OCoLC)1164933609
|z (OCoLC)1166165023
|z (OCoLC)1167560685
|z (OCoLC)1171334595
|z (OCoLC)1228592512
|
037 |
|
|
|a 9781119058649
|b Wiley
|
050 |
|
4 |
|a QA166
|
072 |
|
7 |
|a MAT
|x 000000
|2 bisacsh
|
049 |
|
|
|a HCDD
|
100 |
1 |
|
|a Rigo, Michel,
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjChCKVw7H4BHhfGjHWrHK
|
245 |
1 |
0 |
|a Advanced graph theory and combinatorics /
|c Michel Rigo.
|
264 |
|
1 |
|a London, UK :
|b ISTE Ltd. ;
|a Hoboken, NJ :
|b Wiley,
|c 2016.
|
300 |
|
|
|a 1 online resource :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
490 |
1 |
|
|a Computer engineering series
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (John Wiley, viewed December 12, 2016).
|
520 |
|
|
|a Advanced Graph Theory focuses on some of the main notions arising in graph theory with an emphasis from the very start of the book on the possible applications of the theory and the fruitful links existing with linear algebra. The second part of the book covers basic material related to linear recurrence relations with application to counting and the asymptotic estimate of the rate of growth of a sequence satisfying a recurrence relation.
|
505 |
0 |
|
|a Intro -- Table of Contents -- Dedication -- Title -- Copyright -- Foreword -- Introduction -- 1 A First Encounter with Graphs -- 1.1. A few definitions -- 1.2. Paths and connected components -- 1.3. Eulerian graphs -- 1.4. Defining Hamiltonian graphs -- 1.5. Distance and shortest path -- 1.6. A few applications -- 1.7. Comments -- 1.8. Exercises -- 2 A Glimpse at Complexity Theory -- 2.1. Some complexity classes -- 2.2. Polynomial reductions -- 2.3. More hard problems in graph theory -- 3 Hamiltonian Graphs -- 3.1. A necessary condition -- 3.2. A theorem of Dirac -- 3.3. A theorem of Ore and the closure of a graph -- 3.4. Chvátal's condition on degrees -- 3.5. Partition of Kn into Hamiltonian circuits -- 3.6. De Bruijn graphs and magic tricks -- 3.7. Exercises -- 4 Topological Sort and Graph Traversals -- 4.1. Trees -- 4.2. Acyclic graphs -- 4.3. Exercises -- 5 Building New Graphs from Old Ones -- 5.1. Some natural transformations -- 5.2. Products -- 5.3. Quotients -- 5.4. Counting spanning trees -- 5.5. Unraveling -- 5.6. Exercises -- 6 Planar Graphs -- 6.1. Formal definitions -- 6.2. Euler's formula -- 6.3. Steinitz' theorem -- 6.4. About the four-color theorem -- 6.5. The five-color theorem -- 6.6. From Kuratowski's theorem to minors -- 6.7. Exercises -- 7 Colorings -- 7.1. Homomorphisms of graphs -- 7.2. A digression: isomorphisms and labeled vertices -- 7.3. Link with colorings -- 7.4. Chromatic number and chromatic polynomial -- 7.5. Ramsey numbers -- 7.6. Exercises -- 8 Algebraic Graph Theory -- 8.1. Prerequisites -- 8.2. Adjacency matrix -- 8.3. Playing with linear recurrences -- 8.4. Interpretation of the coefficients -- 8.5. A theorem of Hoffman -- 8.6. Counting directed spanning trees -- 8.7. Comments -- 8.8. Exercises -- 9 Perron-Frobenius Theory -- 9.1. Primitive graphs and Perron's theorem -- 9.2. Irreducible graphs.
|
650 |
|
0 |
|a Graph theory.
|
650 |
|
0 |
|a Combinatorial analysis.
|
650 |
|
7 |
|a COMPUTERS
|x Systems Architecture
|x General.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Combinatorial analysis
|2 fast
|
650 |
|
7 |
|a Graph theory
|2 fast
|
758 |
|
|
|i has work:
|a Advanced graph theory and combinatorics (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGdkyP8CVqC4XY9YcgGwT3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Rigo, Michel.
|t Advanced graph theory and combinatorics.
|d London, England ; Hoboken, New Jersey : ISTE ; Wiley, ©2016
|h approximately 257 pages
|k Computer engineering series (London, England)
|z 9781848216167
|
830 |
|
0 |
|a Computer engineering series.
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=4785174
|y Click for online access
|
903 |
|
|
|a EBC-AC
|
994 |
|
|
|a 92
|b HCD
|